Skip to content

Commit b3155f3

Browse files
committed
Pushing the docs to dev/ for branch: master, commit e0e738760625129be71839fac2dad9325fb90225
1 parent dd1ce0c commit b3155f3

File tree

1,071 files changed

+3307
-3337
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,071 files changed

+3307
-3337
lines changed
-49 Bytes
Binary file not shown.
-48 Bytes
Binary file not shown.

dev/_downloads/plot_digits_pipe.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"print(__doc__)\n\n\n# Code source: Ga\u00ebl Varoquaux\n# Modified for documentation by Jaques Grobler\n# License: BSD 3 clause\n\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport pandas as pd\n\nfrom sklearn import datasets\nfrom sklearn.decomposition import PCA\nfrom sklearn.linear_model import SGDClassifier\nfrom sklearn.pipeline import Pipeline\nfrom sklearn.model_selection import GridSearchCV\n\n\n# Define a pipeline to search for the best combination of PCA truncation\n# and classifier regularization.\nlogistic = SGDClassifier(loss='log', penalty='l2', early_stopping=True,\n max_iter=10000, tol=1e-5, random_state=0)\npca = PCA()\npipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])\n\ndigits = datasets.load_digits()\nX_digits = digits.data\ny_digits = digits.target\n\n# Parameters of pipelines can be set using \u2018__\u2019 separated parameter names:\nparam_grid = {\n 'pca__n_components': [5, 20, 30, 40, 50, 64],\n 'logistic__alpha': np.logspace(-4, 4, 5),\n}\nsearch = GridSearchCV(pipe, param_grid, iid=False, cv=5,\n return_train_score=False)\nsearch.fit(X_digits, y_digits)\nprint(\"Best parameter (CV score=%0.3f):\" % search.best_score_)\nprint(search.best_params_)\n\n# Plot the PCA spectrum\npca.fit(X_digits)\n\nfig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6))\nax0.plot(pca.explained_variance_ratio_, linewidth=2)\nax0.set_ylabel('PCA explained variance')\n\nax0.axvline(search.best_estimator_.named_steps['pca'].n_components,\n linestyle=':', label='n_components chosen')\nax0.legend(prop=dict(size=12))\n\n# For each number of components, find the best classifier results\nresults = pd.DataFrame(search.cv_results_)\ncomponents_col = 'param_pca__n_components'\nbest_clfs = results.groupby(components_col).apply(\n lambda g: g.nlargest(1, 'mean_test_score'))\n\nbest_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score',\n legend=False, ax=ax1)\nax1.set_ylabel('Classification accuracy (val)')\nax1.set_xlabel('n_components')\n\nplt.tight_layout()\nplt.show()"
29+
"print(__doc__)\n\n\n# Code source: Ga\u00ebl Varoquaux\n# Modified for documentation by Jaques Grobler\n# License: BSD 3 clause\n\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nimport pandas as pd\n\nfrom sklearn import datasets\nfrom sklearn.decomposition import PCA\nfrom sklearn.linear_model import SGDClassifier\nfrom sklearn.pipeline import Pipeline\nfrom sklearn.model_selection import GridSearchCV\n\n\n# Define a pipeline to search for the best combination of PCA truncation\n# and classifier regularization.\nlogistic = SGDClassifier(loss='log', penalty='l2', early_stopping=True,\n max_iter=10000, tol=1e-5, random_state=0)\npca = PCA()\npipe = Pipeline(steps=[('pca', pca), ('logistic', logistic)])\n\ndigits = datasets.load_digits()\nX_digits = digits.data\ny_digits = digits.target\n\n# Parameters of pipelines can be set using \u2018__\u2019 separated parameter names:\nparam_grid = {\n 'pca__n_components': [5, 20, 30, 40, 50, 64],\n 'logistic__alpha': np.logspace(-4, 4, 5),\n}\nsearch = GridSearchCV(pipe, param_grid, iid=False, cv=5)\nsearch.fit(X_digits, y_digits)\nprint(\"Best parameter (CV score=%0.3f):\" % search.best_score_)\nprint(search.best_params_)\n\n# Plot the PCA spectrum\npca.fit(X_digits)\n\nfig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True, figsize=(6, 6))\nax0.plot(pca.explained_variance_ratio_, linewidth=2)\nax0.set_ylabel('PCA explained variance')\n\nax0.axvline(search.best_estimator_.named_steps['pca'].n_components,\n linestyle=':', label='n_components chosen')\nax0.legend(prop=dict(size=12))\n\n# For each number of components, find the best classifier results\nresults = pd.DataFrame(search.cv_results_)\ncomponents_col = 'param_pca__n_components'\nbest_clfs = results.groupby(components_col).apply(\n lambda g: g.nlargest(1, 'mean_test_score'))\n\nbest_clfs.plot(x=components_col, y='mean_test_score', yerr='std_test_score',\n legend=False, ax=ax1)\nax1.set_ylabel('Classification accuracy (val)')\nax1.set_xlabel('n_components')\n\nplt.tight_layout()\nplt.show()"
3030
]
3131
}
3232
],

dev/_downloads/plot_digits_pipe.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -47,8 +47,7 @@
4747
'pca__n_components': [5, 20, 30, 40, 50, 64],
4848
'logistic__alpha': np.logspace(-4, 4, 5),
4949
}
50-
search = GridSearchCV(pipe, param_grid, iid=False, cv=5,
51-
return_train_score=False)
50+
search = GridSearchCV(pipe, param_grid, iid=False, cv=5)
5251
search.fit(X_digits, y_digits)
5352
print("Best parameter (CV score=%0.3f):" % search.best_score_)
5453
print(search.best_params_)

dev/_downloads/scikit-learn-docs.pdf

-8.24 KB
Binary file not shown.

dev/_images/iris.png

0 Bytes

0 commit comments

Comments
 (0)