Skip to content

Commit 049c2b7

Browse files
committed
Pushing the docs to dev/ for branch: main, commit e7c8fb44bf408e5eca846e71fef01f3fb0c050cb
1 parent c66c11a commit 049c2b7

File tree

1,229 files changed

+4250
-4253
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,229 files changed

+4250
-4253
lines changed
Binary file not shown.

dev/_downloads/4cf0456267ced0f869a458ef4776d4c5/plot_release_highlights_1_1_0.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,6 @@
2626
# ----------------------------------------------------------------
2727
# :class:`ensemble.HistGradientBoostingRegressor` can model quantiles with
2828
# `loss="quantile"` and the new parameter `quantile`.
29-
from sklearn.datasets import make_regression
3029
from sklearn.ensemble import HistGradientBoostingRegressor
3130
import numpy as np
3231
import matplotlib.pyplot as plt

dev/_downloads/68fdea23e50d165632d4bd4e36453cd5/plot_release_highlights_1_1_0.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
},
3434
"outputs": [],
3535
"source": [
36-
"from sklearn.datasets import make_regression\nfrom sklearn.ensemble import HistGradientBoostingRegressor\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# Simple regression function for X * cos(X)\nrng = np.random.RandomState(42)\nX_1d = np.linspace(0, 10, num=2000)\nX = X_1d.reshape(-1, 1)\ny = X_1d * np.cos(X_1d) + rng.normal(scale=X_1d / 3)\n\nquantiles = [0.95, 0.5, 0.05]\nparameters = dict(loss=\"quantile\", max_bins=32, max_iter=50)\nhist_quantiles = {\n f\"quantile={quantile:.2f}\": HistGradientBoostingRegressor(\n **parameters, quantile=quantile\n ).fit(X, y)\n for quantile in quantiles\n}\n\nfig, ax = plt.subplots()\nax.plot(X_1d, y, \"o\", alpha=0.5, markersize=1)\nfor quantile, hist in hist_quantiles.items():\n ax.plot(X_1d, hist.predict(X), label=quantile)\n_ = ax.legend(loc=\"lower left\")"
36+
"from sklearn.ensemble import HistGradientBoostingRegressor\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# Simple regression function for X * cos(X)\nrng = np.random.RandomState(42)\nX_1d = np.linspace(0, 10, num=2000)\nX = X_1d.reshape(-1, 1)\ny = X_1d * np.cos(X_1d) + rng.normal(scale=X_1d / 3)\n\nquantiles = [0.95, 0.5, 0.05]\nparameters = dict(loss=\"quantile\", max_bins=32, max_iter=50)\nhist_quantiles = {\n f\"quantile={quantile:.2f}\": HistGradientBoostingRegressor(\n **parameters, quantile=quantile\n ).fit(X, y)\n for quantile in quantiles\n}\n\nfig, ax = plt.subplots()\nax.plot(X_1d, y, \"o\", alpha=0.5, markersize=1)\nfor quantile, hist in hist_quantiles.items():\n ax.plot(X_1d, hist.predict(X), label=quantile)\n_ = ax.legend(loc=\"lower left\")"
3737
]
3838
},
3939
{
Binary file not shown.

dev/_downloads/scikit-learn-docs.zip

-96 Bytes
Binary file not shown.
212 Bytes
-142 Bytes
99 Bytes
88 Bytes
62 Bytes

0 commit comments

Comments
 (0)