Skip to content

Commit 0972183

Browse files
committed
Pushing the docs to dev/ for branch: master, commit e8a364b471edc1f5d54c3e6a90696578db3f7171
1 parent c0d4050 commit 0972183

File tree

1,231 files changed

+3735
-3732
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,231 files changed

+3735
-3732
lines changed
Binary file not shown.

dev/_downloads/2402de18d671ce5087e3760b2540184f/plot_grid_search_stats.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -341,7 +341,7 @@
341341
"cell_type": "markdown",
342342
"metadata": {},
343343
"source": [
344-
"#### References:\n.. [1] Dietterich, T. G. (1998). `Approximate statistical tests for comparing\n supervised classification learning algorithms\n <http://web.cs.iastate.edu/~jtian/cs573/Papers/Dietterich-98.pdf>`_.\n Neural computation, 10(7).\n.. [2] Nadeau, C., & Bengio, Y. (2000). `Inference for the generalization\n error\n <https://papers.nips.cc/paper/1661-inference-for-the-generalization-error.pdf>`_.\n In Advances in neural information processing systems.\n.. [3] Bouckaert, R. R., & Frank, E. (2004). `Evaluating the replicability of\n significance tests for comparing learning algorithms\n <https://www.cms.waikato.ac.nz/~ml/publications/2004/bouckaert-frank.pdf>`_.\n In Pacific-Asia Conference on Knowledge Discovery and Data Mining.\n.. [4] Benavoli, A., Corani, G., Dem\u0161ar, J., & Zaffalon, M. (2017). `Time for\n a change: a tutorial for comparing multiple classifiers through\n Bayesian analysis\n <http://www.jmlr.org/papers/volume18/16-305/16-305.pdf>`_.\n The Journal of Machine Learning Research, 18(1). See the Python\n library that accompanies this paper `here\n <https://github.com/janezd/baycomp>`_.\n.. [5] Diebold, F.X. & Mariano R.S. (1995). `Comparing predictive accuracy\n <http://www.est.uc3m.es/esp/nueva_docencia/comp_col_get/lade/tecnicas_prediccion/Practicas0708/Comparing%20Predictive%20Accuracy%20(Dielbold).pdf>`_\n Journal of Business & economic statistics, 20(1), 134-144.\n\n"
344+
".. topic:: References\n\n .. [1] Dietterich, T. G. (1998). `Approximate statistical tests for\n comparing supervised classification learning algorithms\n <http://web.cs.iastate.edu/~jtian/cs573/Papers/Dietterich-98.pdf>`_.\n Neural computation, 10(7).\n .. [2] Nadeau, C., & Bengio, Y. (2000). `Inference for the generalization\n error\n <https://papers.nips.cc/paper/1661-inference-for-the-generalization-error.pdf>`_.\n In Advances in neural information processing systems.\n .. [3] Bouckaert, R. R., & Frank, E. (2004). `Evaluating the replicability\n of significance tests for comparing learning algorithms\n <https://www.cms.waikato.ac.nz/~ml/publications/2004/bouckaert-frank.pdf>`_.\n In Pacific-Asia Conference on Knowledge Discovery and Data Mining.\n .. [4] Benavoli, A., Corani, G., Dem\u0161ar, J., & Zaffalon, M. (2017). `Time\n for a change: a tutorial for comparing multiple classifiers through\n Bayesian analysis\n <http://www.jmlr.org/papers/volume18/16-305/16-305.pdf>`_.\n The Journal of Machine Learning Research, 18(1). See the Python\n library that accompanies this paper `here\n <https://github.com/janezd/baycomp>`_.\n .. [5] Diebold, F.X. & Mariano R.S. (1995). `Comparing predictive accuracy\n <http://www.est.uc3m.es/esp/nueva_docencia/comp_col_get/lade/tecnicas_prediccion/Practicas0708/Comparing%20Predictive%20Accuracy%20(Dielbold).pdf>`_\n Journal of Business & economic statistics, 20(1), 134-144.\n\n"
345345
]
346346
}
347347
],
Binary file not shown.

dev/_downloads/efb3df90d4ec295fa0dafe6c8b46211b/plot_grid_search_stats.py

Lines changed: 24 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -551,27 +551,27 @@ def compute_corrected_ttest(differences, df, n_train, n_test):
551551
# correction is needed when using the frequentist approach.
552552

553553
# %%
554-
# References:
555-
# ___________
556-
# .. [1] Dietterich, T. G. (1998). `Approximate statistical tests for comparing
557-
# supervised classification learning algorithms
558-
# <http://web.cs.iastate.edu/~jtian/cs573/Papers/Dietterich-98.pdf>`_.
559-
# Neural computation, 10(7).
560-
# .. [2] Nadeau, C., & Bengio, Y. (2000). `Inference for the generalization
561-
# error
562-
# <https://papers.nips.cc/paper/1661-inference-for-the-generalization-error.pdf>`_.
563-
# In Advances in neural information processing systems.
564-
# .. [3] Bouckaert, R. R., & Frank, E. (2004). `Evaluating the replicability of
565-
# significance tests for comparing learning algorithms
566-
# <https://www.cms.waikato.ac.nz/~ml/publications/2004/bouckaert-frank.pdf>`_.
567-
# In Pacific-Asia Conference on Knowledge Discovery and Data Mining.
568-
# .. [4] Benavoli, A., Corani, G., Demšar, J., & Zaffalon, M. (2017). `Time for
569-
# a change: a tutorial for comparing multiple classifiers through
570-
# Bayesian analysis
571-
# <http://www.jmlr.org/papers/volume18/16-305/16-305.pdf>`_.
572-
# The Journal of Machine Learning Research, 18(1). See the Python
573-
# library that accompanies this paper `here
574-
# <https://github.com/janezd/baycomp>`_.
575-
# .. [5] Diebold, F.X. & Mariano R.S. (1995). `Comparing predictive accuracy
576-
# <http://www.est.uc3m.es/esp/nueva_docencia/comp_col_get/lade/tecnicas_prediccion/Practicas0708/Comparing%20Predictive%20Accuracy%20(Dielbold).pdf>`_
577-
# Journal of Business & economic statistics, 20(1), 134-144.
554+
# .. topic:: References
555+
#
556+
# .. [1] Dietterich, T. G. (1998). `Approximate statistical tests for
557+
# comparing supervised classification learning algorithms
558+
# <http://web.cs.iastate.edu/~jtian/cs573/Papers/Dietterich-98.pdf>`_.
559+
# Neural computation, 10(7).
560+
# .. [2] Nadeau, C., & Bengio, Y. (2000). `Inference for the generalization
561+
# error
562+
# <https://papers.nips.cc/paper/1661-inference-for-the-generalization-error.pdf>`_.
563+
# In Advances in neural information processing systems.
564+
# .. [3] Bouckaert, R. R., & Frank, E. (2004). `Evaluating the replicability
565+
# of significance tests for comparing learning algorithms
566+
# <https://www.cms.waikato.ac.nz/~ml/publications/2004/bouckaert-frank.pdf>`_.
567+
# In Pacific-Asia Conference on Knowledge Discovery and Data Mining.
568+
# .. [4] Benavoli, A., Corani, G., Demšar, J., & Zaffalon, M. (2017). `Time
569+
# for a change: a tutorial for comparing multiple classifiers through
570+
# Bayesian analysis
571+
# <http://www.jmlr.org/papers/volume18/16-305/16-305.pdf>`_.
572+
# The Journal of Machine Learning Research, 18(1). See the Python
573+
# library that accompanies this paper `here
574+
# <https://github.com/janezd/baycomp>`_.
575+
# .. [5] Diebold, F.X. & Mariano R.S. (1995). `Comparing predictive accuracy
576+
# <http://www.est.uc3m.es/esp/nueva_docencia/comp_col_get/lade/tecnicas_prediccion/Practicas0708/Comparing%20Predictive%20Accuracy%20(Dielbold).pdf>`_
577+
# Journal of Business & economic statistics, 20(1), 134-144.

dev/_downloads/scikit-learn-docs.pdf

-7.19 KB
Binary file not shown.

dev/_images/binder_badge_logo.png

0 Bytes

dev/_images/iris.png

0 Bytes
-571 Bytes
-571 Bytes
8 Bytes

0 commit comments

Comments
 (0)