Skip to content

Commit 2a2ba5f

Browse files
committed
Pushing the docs for revision for branch: master, commit 5bb983013c71d8e9bcd7bed8654e60b1bcf20a47
1 parent b1a0cf7 commit 2a2ba5f

File tree

877 files changed

+2920
-2814
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

877 files changed

+2920
-2814
lines changed
-2 Bytes
Binary file not shown.
-2 Bytes
Binary file not shown.

dev/_downloads/plot_random_forest_regression_multioutput.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
},
1616
{
1717
"source": [
18-
"\n# Comparing random forests and the multi-output meta estimator\n\n\nAn example to compare multi-output regression with random forest and\nthe `multioutput.MultiOutputRegressor <_multiclass>` meta-estimator.\n\nThis example illustrates the use of the\n`multioutput.MultiOutputRegressor <_multiclass>` meta-estimator\nto perform multi-output regression. A random forest regressor is used,\nwhich supports multi-output regression natively, so the results can be\ncompared.\n\nThe random forest regressor will only ever predict values within the\nrange of observations or closer to zero for each of the targets. As a\nresult the predictions are biased towards the centre of the circle.\n\nUsing a single underlying feature the model learns both the\nx and y coordinate as output.\n\n\n"
18+
"\n# Comparing random forests and the multi-output meta estimator\n\n\nAn example to compare multi-output regression with random forest and\nthe `multioutput.MultiOutputRegressor <multiclass>` meta-estimator.\n\nThis example illustrates the use of the\n`multioutput.MultiOutputRegressor <multiclass>` meta-estimator\nto perform multi-output regression. A random forest regressor is used,\nwhich supports multi-output regression natively, so the results can be\ncompared.\n\nThe random forest regressor will only ever predict values within the\nrange of observations or closer to zero for each of the targets. As a\nresult the predictions are biased towards the centre of the circle.\n\nUsing a single underlying feature the model learns both the\nx and y coordinate as output.\n\n\n"
1919
],
2020
"cell_type": "markdown",
2121
"metadata": {}

dev/_downloads/plot_random_forest_regression_multioutput.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,10 +4,10 @@
44
============================================================
55
66
An example to compare multi-output regression with random forest and
7-
the :ref:`multioutput.MultiOutputRegressor <_multiclass>` meta-estimator.
7+
the :ref:`multioutput.MultiOutputRegressor <multiclass>` meta-estimator.
88
99
This example illustrates the use of the
10-
:ref:`multioutput.MultiOutputRegressor <_multiclass>` meta-estimator
10+
:ref:`multioutput.MultiOutputRegressor <multiclass>` meta-estimator
1111
to perform multi-output regression. A random forest regressor is used,
1212
which supports multi-output regression natively, so the results can be
1313
compared.
26 Bytes
26 Bytes
42 Bytes
42 Bytes
261 Bytes
261 Bytes

0 commit comments

Comments
 (0)