Skip to content

Commit 5547c7f

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 06e9a3fe39e0f5bcd46c4b8a65323a53286f8374
1 parent 7e21765 commit 5547c7f

File tree

1,332 files changed

+4976
-4994
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,332 files changed

+4976
-4994
lines changed

dev/_downloads/0805c1058fba7383113f44df060e3b88/plot_changed_only_pprint_parameter.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
66
This example illustrates the use of the print_changed_only global parameter.
77
8-
Setting print_changed_only to True will alterate the representation of
8+
Setting print_changed_only to True will alternate the representation of
99
estimators to only show the parameters that have been set to non-default
1010
values. This can be used to have more compact representations.
1111
"""
Binary file not shown.

dev/_downloads/60b2a2c4441794028ceb207b0614746f/plot_roc.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -151,7 +151,7 @@
151151
# .........................................
152152
# The :func:`sklearn.metrics.roc_auc_score` function can be used for
153153
# multi-class classification. The multi-class One-vs-One scheme compares every
154-
# unique pairwise combination of classes. In this section, we calcuate the AUC
154+
# unique pairwise combination of classes. In this section, we calculate the AUC
155155
# using the OvR and OvO schemes. We report a macro average, and a
156156
# prevalence-weighted average.
157157
y_prob = classifier.predict_proba(X_test)

dev/_downloads/6530c9428bacd72600c7516d4bc1b117/plot_t_sne_perplexity.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
An illustration of t-SNE on the two concentric circles and the S-curve
77
datasets for different perplexity values.
88
9-
We observe a tendency towards clearer shapes as the preplexity value increases.
9+
We observe a tendency towards clearer shapes as the perplexity value increases.
1010
1111
The size, the distance and the shape of clusters may vary upon initialization,
1212
perplexity values and does not always convey a meaning.

dev/_downloads/830cf55f85ef397d9f388916c4de43e9/plot_roc.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@
6969
"cell_type": "markdown",
7070
"metadata": {},
7171
"source": [
72-
"Area under ROC for the multiclass problem\n.........................................\nThe :func:`sklearn.metrics.roc_auc_score` function can be used for\nmulti-class classification. The multi-class One-vs-One scheme compares every\nunique pairwise combination of classes. In this section, we calcuate the AUC\nusing the OvR and OvO schemes. We report a macro average, and a\nprevalence-weighted average.\n\n"
72+
"Area under ROC for the multiclass problem\n.........................................\nThe :func:`sklearn.metrics.roc_auc_score` function can be used for\nmulti-class classification. The multi-class One-vs-One scheme compares every\nunique pairwise combination of classes. In this section, we calculate the AUC\nusing the OvR and OvO schemes. We report a macro average, and a\nprevalence-weighted average.\n\n"
7373
]
7474
},
7575
{

dev/_downloads/8407971cce85862f629c5e657b6e6e98/plot_changed_only_pprint_parameter.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
"cell_type": "markdown",
1616
"metadata": {},
1717
"source": [
18-
"\n# Compact estimator representations\n\n\nThis example illustrates the use of the print_changed_only global parameter.\n\nSetting print_changed_only to True will alterate the representation of\nestimators to only show the parameters that have been set to non-default\nvalues. This can be used to have more compact representations.\n"
18+
"\n# Compact estimator representations\n\n\nThis example illustrates the use of the print_changed_only global parameter.\n\nSetting print_changed_only to True will alternate the representation of\nestimators to only show the parameters that have been set to non-default\nvalues. This can be used to have more compact representations.\n"
1919
]
2020
},
2121
{

dev/_downloads/b6cd0a64268e81592d4c6c637220108c/plot_t_sne_perplexity.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
"cell_type": "markdown",
1616
"metadata": {},
1717
"source": [
18-
"\n=============================================================================\nt-SNE: The effect of various perplexity values on the shape\n=============================================================================\n\nAn illustration of t-SNE on the two concentric circles and the S-curve\ndatasets for different perplexity values.\n\nWe observe a tendency towards clearer shapes as the preplexity value increases.\n\nThe size, the distance and the shape of clusters may vary upon initialization,\nperplexity values and does not always convey a meaning.\n\nAs shown below, t-SNE for higher perplexities finds meaningful topology of\ntwo concentric circles, however the size and the distance of the circles varies\nslightly from the original. Contrary to the two circles dataset, the shapes\nvisually diverge from S-curve topology on the S-curve dataset even for\nlarger perplexity values.\n\nFor further details, \"How to Use t-SNE Effectively\"\nhttps://distill.pub/2016/misread-tsne/ provides a good discussion of the\neffects of various parameters, as well as interactive plots to explore\nthose effects.\n"
18+
"\n=============================================================================\nt-SNE: The effect of various perplexity values on the shape\n=============================================================================\n\nAn illustration of t-SNE on the two concentric circles and the S-curve\ndatasets for different perplexity values.\n\nWe observe a tendency towards clearer shapes as the perplexity value increases.\n\nThe size, the distance and the shape of clusters may vary upon initialization,\nperplexity values and does not always convey a meaning.\n\nAs shown below, t-SNE for higher perplexities finds meaningful topology of\ntwo concentric circles, however the size and the distance of the circles varies\nslightly from the original. Contrary to the two circles dataset, the shapes\nvisually diverge from S-curve topology on the S-curve dataset even for\nlarger perplexity values.\n\nFor further details, \"How to Use t-SNE Effectively\"\nhttps://distill.pub/2016/misread-tsne/ provides a good discussion of the\neffects of various parameters, as well as interactive plots to explore\nthose effects.\n"
1919
]
2020
},
2121
{

dev/_downloads/c60067c77f8feac9913d498602b7257e/plot_roc_curve_visualization_api.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@
6969
"cell_type": "markdown",
7070
"metadata": {},
7171
"source": [
72-
"Training a Random Forest and Plotting the ROC Curve\n--------------------------------------------------------\nWe train a random forest classifier and create a plot comparing it to the SVC\nROC curve. Notice how `svc_disp` uses\n:func:`~sklearn.metrics.RocCurveDisplay.plot` to plot the SVC ROC curve\nwithout recomputing the values of the roc curve itself. Futhermore, we\npass `alpha=0.8` to the plot functions to adjust the alpha values of the\ncurves.\n\n"
72+
"Training a Random Forest and Plotting the ROC Curve\n--------------------------------------------------------\nWe train a random forest classifier and create a plot comparing it to the SVC\nROC curve. Notice how `svc_disp` uses\n:func:`~sklearn.metrics.RocCurveDisplay.plot` to plot the SVC ROC curve\nwithout recomputing the values of the roc curve itself. Furthermore, we\npass `alpha=0.8` to the plot functions to adjust the alpha values of the\ncurves.\n\n"
7373
]
7474
},
7575
{
Binary file not shown.

dev/_downloads/e2f118a17ad70541f445f35934fdbb99/plot_roc_curve_visualization_api.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@
4444
# We train a random forest classifier and create a plot comparing it to the SVC
4545
# ROC curve. Notice how `svc_disp` uses
4646
# :func:`~sklearn.metrics.RocCurveDisplay.plot` to plot the SVC ROC curve
47-
# without recomputing the values of the roc curve itself. Futhermore, we
47+
# without recomputing the values of the roc curve itself. Furthermore, we
4848
# pass `alpha=0.8` to the plot functions to adjust the alpha values of the
4949
# curves.
5050
rfc = RandomForestClassifier(n_estimators=10, random_state=42)

0 commit comments

Comments
 (0)