Skip to content

Commit bbb4831

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 70442b9ee3753a6d63a9b2bfd35e3e51cadce230
1 parent e43205b commit bbb4831

File tree

1,356 files changed

+4687
-4717
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,356 files changed

+4687
-4717
lines changed
Binary file not shown.

dev/_downloads/3018e0d07b27e25beba9764116709763/plot_ica_blind_source_separation.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -51,7 +51,7 @@
5151
},
5252
"outputs": [],
5353
"source": [
54-
"from sklearn.decomposition import FastICA, PCA\n\n# Compute ICA\nica = FastICA(n_components=3)\nS_ = ica.fit_transform(X) # Reconstruct signals\nA_ = ica.mixing_ # Get estimated mixing matrix\n\n# We can `prove` that the ICA model applies by reverting the unmixing.\nassert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)\n\n# For comparison, compute PCA\npca = PCA(n_components=3)\nH = pca.fit_transform(X) # Reconstruct signals based on orthogonal components"
54+
"from sklearn.decomposition import FastICA, PCA\n\n# Compute ICA\nica = FastICA(n_components=3, whiten=\"arbitrary-variance\")\nS_ = ica.fit_transform(X) # Reconstruct signals\nA_ = ica.mixing_ # Get estimated mixing matrix\n\n# We can `prove` that the ICA model applies by reverting the unmixing.\nassert np.allclose(X, np.dot(S_, A_.T) + ica.mean_)\n\n# For comparison, compute PCA\npca = PCA(n_components=3)\nH = pca.fit_transform(X) # Reconstruct signals based on orthogonal components"
5555
]
5656
},
5757
{
Binary file not shown.

dev/_downloads/b122040dba159b8887080828461a517e/plot_ica_blind_source_separation.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@
4444
from sklearn.decomposition import FastICA, PCA
4545

4646
# Compute ICA
47-
ica = FastICA(n_components=3)
47+
ica = FastICA(n_components=3, whiten="arbitrary-variance")
4848
S_ = ica.fit_transform(X) # Reconstruct signals
4949
A_ = ica.mixing_ # Get estimated mixing matrix
5050

dev/_downloads/scikit-learn-docs.zip

11.9 KB
Binary file not shown.
228 Bytes
23 Bytes
0 Bytes
0 Bytes
-519 Bytes

0 commit comments

Comments
 (0)