Skip to content

Commit c1e2634

Browse files
committed
Pushing the docs for revision for branch: master, commit 24198ffbb8f3d251e867ce299a42192dcad5fa82
1 parent 3147aaa commit c1e2634

File tree

977 files changed

+3469
-3481
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

977 files changed

+3469
-3481
lines changed

dev/_downloads/plot_calibration.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
probabilities is often desirable as a postprocessing. This example illustrates
1212
two different methods for this calibration and evaluates the quality of the
1313
returned probabilities using Brier's score
14-
(see http://en.wikipedia.org/wiki/Brier_score).
14+
(see https://en.wikipedia.org/wiki/Brier_score).
1515
1616
Compared are the estimated probability using a Gaussian naive Bayes classifier
1717
without calibration, with a sigmoid calibration, and with a non-parametric

dev/_downloads/plot_iris_dataset.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@
1313
Sepal Length, Sepal Width, Petal Length and Petal Width.
1414
1515
The below plot uses the first two features.
16-
See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more
16+
See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more
1717
information on this dataset.
1818
"""
1919
print(__doc__)

dev/_downloads/plot_iris_logistic.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
=========================================================
88
99
Show below is a logistic-regression classifiers decision boundaries on the
10-
`iris <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The
10+
`iris <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ dataset. The
1111
datapoints are colored according to their labels.
1212
1313
"""

dev/_downloads/plot_johnson_lindenstrauss_bound.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
dataset can be randomly projected into a lower dimensional Euclidean
99
space while controlling the distortion in the pairwise distances.
1010
11-
.. _`Johnson-Lindenstrauss lemma`: http://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
11+
.. _`Johnson-Lindenstrauss lemma`: https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
1212
1313
1414
Theoretical bounds

dev/_downloads/plot_manifold_sphere.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
it does not seeks an isotropic representation of the data in
2525
the low-dimensional space. Here the manifold problem matches fairly
2626
that of representing a flat map of the Earth, as with
27-
`map projection <http://en.wikipedia.org/wiki/Map_projection>`_
27+
`map projection <https://en.wikipedia.org/wiki/Map_projection>`_
2828
"""
2929

3030
# Author: Jaques Grobler <[email protected]>

dev/_downloads/plot_pca_iris.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
99
Principal Component Analysis applied to the Iris dataset.
1010
11-
See `here <http://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more
11+
See `here <https://en.wikipedia.org/wiki/Iris_flower_data_set>`_ for more
1212
information on this dataset.
1313
1414
"""

dev/_downloads/plot_species_distribution_modeling.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,17 +13,17 @@
1313
by the package `sklearn.svm` as our modeling tool.
1414
The dataset is provided by Phillips et. al. (2006).
1515
If available, the example uses
16-
`basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_
16+
`basemap <http://matplotlib.org/basemap>`_
1717
to plot the coast lines and national boundaries of South America.
1818
1919
The two species are:
2020
2121
- `"Bradypus variegatus"
22-
<http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ ,
22+
<http://www.iucnredlist.org/details/3038/0>`_ ,
2323
the Brown-throated Sloth.
2424
2525
- `"Microryzomys minutus"
26-
<http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ ,
26+
<http://www.iucnredlist.org/details/13408/0>`_ ,
2727
also known as the Forest Small Rice Rat, a rodent that lives in Peru,
2828
Colombia, Ecuador, Peru, and Venezuela.
2929

dev/_downloads/plot_species_kde.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
Haversine distance metric -- i.e. distances over points in latitude/longitude.
88
The dataset is provided by Phillips et. al. (2006).
99
If available, the example uses
10-
`basemap <http://matplotlib.sourceforge.net/basemap/doc/html/>`_
10+
`basemap <http://matplotlib.org/basemap>`_
1111
to plot the coast lines and national boundaries of South America.
1212
1313
This example does not perform any learning over the data

dev/_downloads/wikipedia_principal_eigenvector.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
so as to assign to each vertex the values of the components of the first
99
eigenvector as a centrality score:
1010
11-
http://en.wikipedia.org/wiki/Eigenvector_centrality
11+
https://en.wikipedia.org/wiki/Eigenvector_centrality
1212
1313
On the graph of webpages and links those values are called the PageRank
1414
scores by Google.
@@ -20,7 +20,7 @@
2020
The traditional way to compute the principal eigenvector is to use the
2121
power iteration method:
2222
23-
http://en.wikipedia.org/wiki/Power_iteration
23+
https://en.wikipedia.org/wiki/Power_iteration
2424
2525
Here the computation is achieved thanks to Martinsson's Randomized SVD
2626
algorithm implemented in the scikit.
-69 Bytes

0 commit comments

Comments
 (0)