Skip to content

Commit d876a7b

Browse files
committed
Pushing the docs to dev/ for branch: main, commit dbde1da1954be91b9a0a12c9a109c17cd109bc76
1 parent bbb4831 commit d876a7b

File tree

1,360 files changed

+4753
-4795
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,360 files changed

+4753
-4795
lines changed
Binary file not shown.

dev/_downloads/521b554adefca348463adbbe047d7e99/plot_linear_model_coefficient_interpretation.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -330,7 +330,7 @@
330330

331331
# %%
332332
plt.figure(figsize=(9, 7))
333-
sns.stripplot(data=coefs, orient="h", color="k", alpha=0.5)
333+
sns.stripplot(data=coefs, orient="h", palette="dark:k", alpha=0.5)
334334
sns.boxplot(data=coefs, orient="h", color="cyan", saturation=0.5, whis=10)
335335
plt.axvline(x=0, color=".5")
336336
plt.xlabel("Coefficient importance")
@@ -389,7 +389,7 @@
389389

390390
# %%
391391
plt.figure(figsize=(9, 7))
392-
sns.stripplot(data=coefs, orient="h", color="k", alpha=0.5)
392+
sns.stripplot(data=coefs, orient="h", palette="dark:k", alpha=0.5)
393393
sns.boxplot(data=coefs, orient="h", color="cyan", saturation=0.5)
394394
plt.axvline(x=0, color=".5")
395395
plt.title("Coefficient importance and its variability")
@@ -492,7 +492,7 @@
492492

493493
# %%
494494
plt.figure(figsize=(9, 7))
495-
sns.stripplot(data=coefs, orient="h", color="k", alpha=0.5)
495+
sns.stripplot(data=coefs, orient="h", palette="dark:k", alpha=0.5)
496496
sns.boxplot(data=coefs, orient="h", color="cyan", saturation=0.5, whis=10)
497497
plt.axvline(x=0, color=".5")
498498
plt.title("Coefficient variability")
@@ -699,7 +699,7 @@
699699

700700
# %%
701701
plt.figure(figsize=(9, 7))
702-
sns.stripplot(data=coefs, orient="h", color="k", alpha=0.5)
702+
sns.stripplot(data=coefs, orient="h", palette="dark:k", alpha=0.5)
703703
sns.boxplot(data=coefs, orient="h", color="cyan", saturation=0.5, whis=100)
704704
plt.axvline(x=0, color=".5")
705705
plt.title("Coefficient variability")
Binary file not shown.

dev/_downloads/c8db473878b6afea8e75e36dc828f109/plot_compare_methods.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@
145145
},
146146
"outputs": [],
147147
"source": [
148-
"md_scaling = manifold.MDS(\n n_components=n_components, max_iter=50, n_init=4, random_state=0\n)\nS_scaling = md_scaling.fit_transform(S_points)\n\nplot_2d(S_scaling, S_color, \"Multidimensional scaling\")"
148+
"md_scaling = manifold.MDS(\n n_components=n_components,\n max_iter=50,\n n_init=4,\n random_state=0,\n normalized_stress=False,\n)\nS_scaling = md_scaling.fit_transform(S_points)\n\nplot_2d(S_scaling, S_color, \"Multidimensional scaling\")"
149149
]
150150
},
151151
{

dev/_downloads/cda53b33015268619bc212d32b7000b9/plot_compare_methods.py

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,11 @@ def add_2d_scatter(ax, points, points_color, title=None):
163163
# Read more in the :ref:`User Guide <multidimensional_scaling>`.
164164

165165
md_scaling = manifold.MDS(
166-
n_components=n_components, max_iter=50, n_init=4, random_state=0
166+
n_components=n_components,
167+
max_iter=50,
168+
n_init=4,
169+
random_state=0,
170+
normalized_stress=False,
167171
)
168172
S_scaling = md_scaling.fit_transform(S_points)
169173

dev/_downloads/cf0f90f46eb559facf7f63f124f61e04/plot_linear_model_coefficient_interpretation.ipynb

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -336,7 +336,7 @@
336336
},
337337
"outputs": [],
338338
"source": [
339-
"plt.figure(figsize=(9, 7))\nsns.stripplot(data=coefs, orient=\"h\", color=\"k\", alpha=0.5)\nsns.boxplot(data=coefs, orient=\"h\", color=\"cyan\", saturation=0.5, whis=10)\nplt.axvline(x=0, color=\".5\")\nplt.xlabel(\"Coefficient importance\")\nplt.title(\"Coefficient importance and its variability\")\nplt.suptitle(\"Ridge model, small regularization\")\nplt.subplots_adjust(left=0.3)"
339+
"plt.figure(figsize=(9, 7))\nsns.stripplot(data=coefs, orient=\"h\", palette=\"dark:k\", alpha=0.5)\nsns.boxplot(data=coefs, orient=\"h\", color=\"cyan\", saturation=0.5, whis=10)\nplt.axvline(x=0, color=\".5\")\nplt.xlabel(\"Coefficient importance\")\nplt.title(\"Coefficient importance and its variability\")\nplt.suptitle(\"Ridge model, small regularization\")\nplt.subplots_adjust(left=0.3)"
340340
]
341341
},
342342
{
@@ -383,7 +383,7 @@
383383
},
384384
"outputs": [],
385385
"source": [
386-
"plt.figure(figsize=(9, 7))\nsns.stripplot(data=coefs, orient=\"h\", color=\"k\", alpha=0.5)\nsns.boxplot(data=coefs, orient=\"h\", color=\"cyan\", saturation=0.5)\nplt.axvline(x=0, color=\".5\")\nplt.title(\"Coefficient importance and its variability\")\nplt.xlabel(\"Coefficient importance\")\nplt.suptitle(\"Ridge model, small regularization, AGE dropped\")\nplt.subplots_adjust(left=0.3)"
386+
"plt.figure(figsize=(9, 7))\nsns.stripplot(data=coefs, orient=\"h\", palette=\"dark:k\", alpha=0.5)\nsns.boxplot(data=coefs, orient=\"h\", color=\"cyan\", saturation=0.5)\nplt.axvline(x=0, color=\".5\")\nplt.title(\"Coefficient importance and its variability\")\nplt.xlabel(\"Coefficient importance\")\nplt.suptitle(\"Ridge model, small regularization, AGE dropped\")\nplt.subplots_adjust(left=0.3)"
387387
]
388388
},
389389
{
@@ -495,7 +495,7 @@
495495
},
496496
"outputs": [],
497497
"source": [
498-
"plt.figure(figsize=(9, 7))\nsns.stripplot(data=coefs, orient=\"h\", color=\"k\", alpha=0.5)\nsns.boxplot(data=coefs, orient=\"h\", color=\"cyan\", saturation=0.5, whis=10)\nplt.axvline(x=0, color=\".5\")\nplt.title(\"Coefficient variability\")\nplt.subplots_adjust(left=0.3)"
498+
"plt.figure(figsize=(9, 7))\nsns.stripplot(data=coefs, orient=\"h\", palette=\"dark:k\", alpha=0.5)\nsns.boxplot(data=coefs, orient=\"h\", color=\"cyan\", saturation=0.5, whis=10)\nplt.axvline(x=0, color=\".5\")\nplt.title(\"Coefficient variability\")\nplt.subplots_adjust(left=0.3)"
499499
]
500500
},
501501
{
@@ -719,7 +719,7 @@
719719
},
720720
"outputs": [],
721721
"source": [
722-
"plt.figure(figsize=(9, 7))\nsns.stripplot(data=coefs, orient=\"h\", color=\"k\", alpha=0.5)\nsns.boxplot(data=coefs, orient=\"h\", color=\"cyan\", saturation=0.5, whis=100)\nplt.axvline(x=0, color=\".5\")\nplt.title(\"Coefficient variability\")\nplt.subplots_adjust(left=0.3)"
722+
"plt.figure(figsize=(9, 7))\nsns.stripplot(data=coefs, orient=\"h\", palette=\"dark:k\", alpha=0.5)\nsns.boxplot(data=coefs, orient=\"h\", color=\"cyan\", saturation=0.5, whis=100)\nplt.axvline(x=0, color=\".5\")\nplt.title(\"Coefficient variability\")\nplt.subplots_adjust(left=0.3)"
723723
]
724724
},
725725
{

dev/_downloads/scikit-learn-docs.zip

-15.5 KB
Binary file not shown.
204 Bytes
-82 Bytes
-67 Bytes

0 commit comments

Comments
 (0)