Skip to content

Commit 221d0ce

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 0d29d2e11d064637b2ec27fe6738039bca724dfe
1 parent 1ce6f88 commit 221d0ce

File tree

1,182 files changed

+3675
-3674
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,182 files changed

+3675
-3674
lines changed

dev/_downloads/03d92e4804175ff27d91620c6dcbe283/plot_random_dataset.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
"cell_type": "markdown",
1616
"metadata": {},
1717
"source": [
18-
"\n# Plot randomly generated classification dataset\n\n\nPlot several randomly generated 2D classification datasets.\nThis example illustrates the :func:`datasets.make_classification`\n:func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles`\nfunctions.\n\nFor ``make_classification``, three binary and two multi-class classification\ndatasets are generated, with different numbers of informative features and\nclusters per class. \n"
18+
"\n# Plot randomly generated classification dataset\n\n\nThis example plots several randomly generated classification datasets.\nFor easy visualization, all datasets have 2 features, plotted on the x and y\naxis. The color of each point represents its class label.\n\nThe first 4 plots use the :func:`~sklearn.datasets.make_classification` with\ndifferent numbers of informative features, clusters per class and classes.\nThe final 2 plots use :func:`~sklearn.datasets.make_blobs` and\n:func:`~sklearn.datasets.make_gaussian_quantiles`.\n"
1919
]
2020
},
2121
{
Binary file not shown.

dev/_downloads/9534d593e925347a4e0eee78c7d5b226/plot_random_dataset.py

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -3,14 +3,15 @@
33
Plot randomly generated classification dataset
44
==============================================
55
6-
Plot several randomly generated 2D classification datasets.
7-
This example illustrates the :func:`datasets.make_classification`
8-
:func:`datasets.make_blobs` and :func:`datasets.make_gaussian_quantiles`
9-
functions.
6+
This example plots several randomly generated classification datasets.
7+
For easy visualization, all datasets have 2 features, plotted on the x and y
8+
axis. The color of each point represents its class label.
109
11-
For ``make_classification``, three binary and two multi-class classification
12-
datasets are generated, with different numbers of informative features and
13-
clusters per class. """
10+
The first 4 plots use the :func:`~sklearn.datasets.make_classification` with
11+
different numbers of informative features, clusters per class and classes.
12+
The final 2 plots use :func:`~sklearn.datasets.make_blobs` and
13+
:func:`~sklearn.datasets.make_gaussian_quantiles`.
14+
"""
1415

1516
print(__doc__)
1617

Binary file not shown.

dev/_downloads/scikit-learn-docs.pdf

13.8 KB
Binary file not shown.

dev/_images/iris.png

0 Bytes
565 Bytes
565 Bytes
693 Bytes
693 Bytes

0 commit comments

Comments
 (0)