Skip to content

Commit 9ed123a

Browse files
committed
Rebuild dev docs at master=53bc02a
1 parent 349b5e3 commit 9ed123a

File tree

73 files changed

+176
-436
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

73 files changed

+176
-436
lines changed

dev/_sources/auto_examples/ensemble/plot_bias_variance.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -83,6 +83,6 @@ References
8383
.. literalinclude:: plot_bias_variance.py
8484
:lines: 64-
8585

86-
**Total running time of the example:** 2.27 seconds
87-
( 0 minutes 2.27 seconds)
86+
**Total running time of the example:** 2.33 seconds
87+
( 0 minutes 2.33 seconds)
8888

dev/_sources/auto_examples/ensemble/plot_forest_iris.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -70,6 +70,6 @@ samples are built sequentially and so do not use multiple cores.
7070
.. literalinclude:: plot_forest_iris.py
7171
:lines: 41-
7272

73-
**Total running time of the example:** 12.31 seconds
74-
( 0 minutes 12.31 seconds)
73+
**Total running time of the example:** 12.08 seconds
74+
( 0 minutes 12.08 seconds)
7575

dev/_sources/auto_examples/preprocessing/plot_function_transformer.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -25,6 +25,6 @@ PCA transformed data.
2525
.. literalinclude:: plot_function_transformer.py
2626
:lines: 11-
2727

28-
**Total running time of the example:** 0.00 seconds
29-
( 0 minutes 0.00 seconds)
28+
**Total running time of the example:** 0.01 seconds
29+
( 0 minutes 0.01 seconds)
3030

dev/auto_examples/ensemble/plot_bias_variance.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -354,8 +354,8 @@ <h2>References<a class="headerlink" href="#references" title="Permalink to this
354354
<a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
355355
</pre></div>
356356
</div>
357-
<p><strong>Total running time of the example:</strong> 2.27 seconds
358-
( 0 minutes 2.27 seconds)</p>
357+
<p><strong>Total running time of the example:</strong> 2.33 seconds
358+
( 0 minutes 2.33 seconds)</p>
359359
</div>
360360
</div>
361361

dev/auto_examples/ensemble/plot_forest_iris.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -327,8 +327,8 @@
327327
<a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
328328
</pre></div>
329329
</div>
330-
<p><strong>Total running time of the example:</strong> 12.31 seconds
331-
( 0 minutes 12.31 seconds)</p>
330+
<p><strong>Total running time of the example:</strong> 12.08 seconds
331+
( 0 minutes 12.08 seconds)</p>
332332
</div>
333333

334334

dev/auto_examples/ensemble/plot_partial_dependence.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,7 @@
176176
(see <a class="reference internal" href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor.feature_importances_" title="sklearn.ensemble.GradientBoostingRegressor.feature_importances_"><tt class="xref py py-attr docutils literal"><span class="pre">feature_importances_</span></tt></a>).</p>
177177
<p>This example shows how to obtain partial dependence plots from a
178178
<a class="reference internal" href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor" title="sklearn.ensemble.GradientBoostingRegressor"><tt class="xref py py-class docutils literal"><span class="pre">GradientBoostingRegressor</span></tt></a> trained on the California
179-
housing dataset. The example is taken from <a class="reference internal" href="../../modules/ensemble.html#htf2009" id="id2">[HTF2009]</a>.</p>
179+
housing dataset. The example is taken from <a class="reference internal" href="#htf2009" id="id2">[HTF2009]</a>.</p>
180180
<p>The plot shows four one-way and one two-way partial dependence plots.
181181
The target variables for the one-way PDP are:
182182
median income (<cite>MedInc</cite>), avg. occupants per household (<cite>AvgOccup</cite>),

dev/auto_examples/preprocessing/plot_function_transformer.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -236,8 +236,8 @@
236236
<a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
237237
</pre></div>
238238
</div>
239-
<p><strong>Total running time of the example:</strong> 0.00 seconds
240-
( 0 minutes 0.00 seconds)</p>
239+
<p><strong>Total running time of the example:</strong> 0.01 seconds
240+
( 0 minutes 0.01 seconds)</p>
241241
</div>
242242

243243

dev/modules/generated/sklearn.calibration.CalibratedClassifierCV.html

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -237,31 +237,31 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.calibrati
237237
</tbody>
238238
</table>
239239
<p class="rubric">References</p>
240-
<table class="docutils citation" frame="void" id="r108" rules="none">
240+
<table class="docutils citation" frame="void" id="r1" rules="none">
241241
<colgroup><col class="label" /><col /></colgroup>
242242
<tbody valign="top">
243-
<tr><td class="label"><a class="fn-backref" href="#id1">[R108]</a></td><td>Obtaining calibrated probability estimates from decision trees
243+
<tr><td class="label"><a class="fn-backref" href="#id1">[R1]</a></td><td>Obtaining calibrated probability estimates from decision trees
244244
and naive Bayesian classifiers, B. Zadrozny &amp; C. Elkan, ICML 2001</td></tr>
245245
</tbody>
246246
</table>
247-
<table class="docutils citation" frame="void" id="r109" rules="none">
247+
<table class="docutils citation" frame="void" id="r2" rules="none">
248248
<colgroup><col class="label" /><col /></colgroup>
249249
<tbody valign="top">
250-
<tr><td class="label"><a class="fn-backref" href="#id2">[R109]</a></td><td>Transforming Classifier Scores into Accurate Multiclass
250+
<tr><td class="label"><a class="fn-backref" href="#id2">[R2]</a></td><td>Transforming Classifier Scores into Accurate Multiclass
251251
Probability Estimates, B. Zadrozny &amp; C. Elkan, (KDD 2002)</td></tr>
252252
</tbody>
253253
</table>
254-
<table class="docutils citation" frame="void" id="r110" rules="none">
254+
<table class="docutils citation" frame="void" id="r3" rules="none">
255255
<colgroup><col class="label" /><col /></colgroup>
256256
<tbody valign="top">
257-
<tr><td class="label"><a class="fn-backref" href="#id3">[R110]</a></td><td>Probabilistic Outputs for Support Vector Machines and Comparisons to
257+
<tr><td class="label"><a class="fn-backref" href="#id3">[R3]</a></td><td>Probabilistic Outputs for Support Vector Machines and Comparisons to
258258
Regularized Likelihood Methods, J. Platt, (1999)</td></tr>
259259
</tbody>
260260
</table>
261-
<table class="docutils citation" frame="void" id="r111" rules="none">
261+
<table class="docutils citation" frame="void" id="r4" rules="none">
262262
<colgroup><col class="label" /><col /></colgroup>
263263
<tbody valign="top">
264-
<tr><td class="label"><a class="fn-backref" href="#id4">[R111]</a></td><td>Predicting Good Probabilities with Supervised Learning,
264+
<tr><td class="label"><a class="fn-backref" href="#id4">[R4]</a></td><td>Predicting Good Probabilities with Supervised Learning,
265265
A. Niculescu-Mizil &amp; R. Caruana, ICML 2005</td></tr>
266266
</tbody>
267267
</table>

dev/modules/generated/sklearn.cluster.AgglomerativeClustering.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@
172172
<h1><a class="reference internal" href="../classes.html#module-sklearn.cluster" title="sklearn.cluster"><tt class="xref py py-mod docutils literal"><span class="pre">sklearn.cluster</span></tt></a>.AgglomerativeClustering<a class="headerlink" href="#sklearn-cluster-agglomerativeclustering" title="Permalink to this headline"></a></h1>
173173
<dl class="class">
174174
<dt id="sklearn.cluster.AgglomerativeClustering">
175-
<em class="property">class </em><tt class="descclassname">sklearn.cluster.</tt><tt class="descname">AgglomerativeClustering</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x20281b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/53bc02a/sklearn/cluster/hierarchical.py#L583"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AgglomerativeClustering" title="Permalink to this definition"></a></dt>
175+
<em class="property">class </em><tt class="descclassname">sklearn.cluster.</tt><tt class="descname">AgglomerativeClustering</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x19331b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/53bc02a/sklearn/cluster/hierarchical.py#L583"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AgglomerativeClustering" title="Permalink to this definition"></a></dt>
176176
<dd><p>Agglomerative Clustering</p>
177177
<p>Recursively merges the pair of clusters that minimally increases
178178
a given linkage distance.</p>
@@ -284,7 +284,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.cluster"
284284
</table>
285285
<dl class="method">
286286
<dt id="sklearn.cluster.AgglomerativeClustering.__init__">
287-
<tt class="descname">__init__</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x20281b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/53bc02a/sklearn/cluster/hierarchical.py#L660"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AgglomerativeClustering.__init__" title="Permalink to this definition"></a></dt>
287+
<tt class="descname">__init__</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x19331b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/53bc02a/sklearn/cluster/hierarchical.py#L660"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AgglomerativeClustering.__init__" title="Permalink to this definition"></a></dt>
288288
<dd></dd></dl>
289289

290290
<dl class="method">

dev/modules/generated/sklearn.cluster.FeatureAgglomeration.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@
172172
<h1><a class="reference internal" href="../classes.html#module-sklearn.cluster" title="sklearn.cluster"><tt class="xref py py-mod docutils literal"><span class="pre">sklearn.cluster</span></tt></a>.FeatureAgglomeration<a class="headerlink" href="#sklearn-cluster-featureagglomeration" title="Permalink to this headline"></a></h1>
173173
<dl class="class">
174174
<dt id="sklearn.cluster.FeatureAgglomeration">
175-
<em class="property">class </em><tt class="descclassname">sklearn.cluster.</tt><tt class="descname">FeatureAgglomeration</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x20281b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/53bc02a/sklearn/cluster/hierarchical.py#L746"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.FeatureAgglomeration" title="Permalink to this definition"></a></dt>
175+
<em class="property">class </em><tt class="descclassname">sklearn.cluster.</tt><tt class="descname">FeatureAgglomeration</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x19331b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/53bc02a/sklearn/cluster/hierarchical.py#L746"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.FeatureAgglomeration" title="Permalink to this definition"></a></dt>
176176
<dd><p>Agglomerate features.</p>
177177
<p>Similar to AgglomerativeClustering, but recursively merges features
178178
instead of samples.</p>
@@ -293,7 +293,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.cluster"
293293
</table>
294294
<dl class="method">
295295
<dt id="sklearn.cluster.FeatureAgglomeration.__init__">
296-
<tt class="descname">__init__</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x20281b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/53bc02a/sklearn/cluster/hierarchical.py#L660"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.FeatureAgglomeration.__init__" title="Permalink to this definition"></a></dt>
296+
<tt class="descname">__init__</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x19331b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/53bc02a/sklearn/cluster/hierarchical.py#L660"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.FeatureAgglomeration.__init__" title="Permalink to this definition"></a></dt>
297297
<dd></dd></dl>
298298

299299
<dl class="method">

0 commit comments

Comments
 (0)