Skip to content

Commit a02b9f6

Browse files
committed
feat: add solutions to lc problem: No.1994
No.1994.The Number of Good Subsets
1 parent 6fa740b commit a02b9f6

File tree

6 files changed

+244
-232
lines changed

6 files changed

+244
-232
lines changed

solution/1900-1999/1994.The Number of Good Subsets/README.md

Lines changed: 90 additions & 78 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,19 @@
6565

6666
<!-- 这里可写通用的实现逻辑 -->
6767

68-
状态压缩 DP。
68+
**方法一:状态压缩动态规划**
69+
70+
注意到题目中 $nums[i]$ 的范围为 $[1, 30]$,因此我们可以预处理出所有小于等于 $30$ 的质数,即 $[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]$。
71+
72+
好子集中,所有元素的乘积可以表示为一个或多个互不相同的质数的乘积,也即是说,每个质因数最多只能出现一次。因此,我们可以使用一个二进制数来表示一个子集中的质因数,其中二进制数的第 $i$ 位表示质数 $primes[i]$ 是否出现在子集中。
73+
74+
我们可以使用状态压缩动态规划的方法来求解本题。设 $f[i]$ 表示二进制数 $i$ 表示的子集中的质因数的乘积为一个或多个互不相同的质数的乘积的方案数。初始时 $f[0]=1$。
75+
76+
我们在 $[2,..30]$ 的范围内枚举一个数 $x$,如果 $x$ 不在 $nums$ 中,或者 $x$ 为 $4, 9, 25$ 的倍数,那么我们可以直接跳过。否则,我们可以将 $x$ 的质因数用一个二进制数 $mask$ 表示,然后我们从大到小枚举当前的状态 $state$,如果 $state$ 与 $mask$ 按位与的结果为 $mask$,那么我们可以从状态 $f[state \oplus mask]$ 转移到状态 $f[state]$,转移方程为 $f[state] = f[state] + cnt[x] \times f[state \oplus mask]$,其中 $cnt[x]$ 表示 $x$ 在 $nums$ 中出现的次数。
77+
78+
注意,我们没有从数字 $1$ 开始枚举,因为我们可以选择任意个数字 $1$,加入到好子集中。那么最终的答案为 $\sum_{i=1}{2^{10}-1} f[i] \times 2^{cnt[1]}$。
79+
80+
时间复杂度 $O(n + C \times M)$,空间复杂度 $O(M)$。其中 $n$ 为 $nums$ 的长度;而 $C$ 和 $M$ 分别为题目中 $nums[i]$ 的范围和状态的个数,本题中 $C=30$, $M=2^{10}$。
6981

7082
<!-- tabs:start -->
7183

@@ -76,29 +88,23 @@
7688
```python
7789
class Solution:
7890
def numberOfGoodSubsets(self, nums: List[int]) -> int:
79-
counter = Counter(nums)
91+
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
92+
cnt = Counter(nums)
8093
mod = 10**9 + 7
81-
prime = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
82-
n = len(prime)
83-
dp = [0] * (1 << n)
84-
dp[0] = 1
94+
n = len(primes)
95+
f = [0] * (1 << n)
96+
f[0] = pow(2, cnt[1])
8597
for x in range(2, 31):
86-
if counter[x] == 0 or x % 4 == 0 or x % 9 == 0 or x % 25 == 0:
98+
if cnt[x] == 0 or x % 4 == 0 or x % 9 == 0 or x % 25 == 0:
8799
continue
88100
mask = 0
89-
for i, p in enumerate(prime):
101+
for i, p in enumerate(primes):
90102
if x % p == 0:
91103
mask |= 1 << i
92-
for state in range(1 << n):
93-
if mask & state:
94-
continue
95-
dp[mask | state] = (dp[mask | state] + counter[x] * dp[state]) % mod
96-
ans = 0
97-
for i in range(1, 1 << n):
98-
ans = (ans + dp[i]) % mod
99-
for i in range(counter[1]):
100-
ans = (ans << 1) % mod
101-
return ans
104+
for state in range((1 << n) - 1, 0, -1):
105+
if state & mask == mask:
106+
f[state] = (f[state] + cnt[x] * f[state ^ mask]) % mod
107+
return sum(f[i] for i in range(1, 1 << n)) % mod
102108
```
103109

104110
### **Java**
@@ -107,40 +113,38 @@ class Solution:
107113

108114
```java
109115
class Solution {
110-
private static final int MOD = (int) 1e9 + 7;
111-
112116
public int numberOfGoodSubsets(int[] nums) {
113-
int[] counter = new int[31];
117+
int[] primes = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
118+
int[] cnt = new int[31];
114119
for (int x : nums) {
115-
++counter[x];
120+
++cnt[x];
121+
}
122+
final int mod = (int) 1e9 + 7;
123+
int n = primes.length;
124+
long[] f = new long[1 << n];
125+
f[0] = 1;
126+
for (int i = 0; i < cnt[1]; ++i) {
127+
f[0] = (f[0] * 2) % mod;
116128
}
117-
int[] prime = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
118-
int n = prime.length;
119-
long[] dp = new long[1 << n];
120-
dp[0] = 1;
121-
for (int x = 2; x <= 30; ++x) {
122-
if (counter[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) {
129+
for (int x = 2; x < 31; ++x) {
130+
if (cnt[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) {
123131
continue;
124132
}
125133
int mask = 0;
126134
for (int i = 0; i < n; ++i) {
127-
if (x % prime[i] == 0) {
128-
mask |= (1 << i);
135+
if (x % primes[i] == 0) {
136+
mask |= 1 << i;
129137
}
130138
}
131-
for (int state = 0; state < 1 << n; ++state) {
132-
if ((mask & state) > 0) {
133-
continue;
139+
for (int state = (1 << n) - 1; state > 0; --state) {
140+
if ((state & mask) == mask) {
141+
f[state] = (f[state] + cnt[x] * f[state ^ mask]) % mod;
134142
}
135-
dp[mask | state] = (dp[mask | state] + counter[x] * dp[state]) % MOD;
136143
}
137144
}
138145
long ans = 0;
139146
for (int i = 1; i < 1 << n; ++i) {
140-
ans = (ans + dp[i]) % MOD;
141-
}
142-
while (counter[1]-- > 0) {
143-
ans = (ans << 1) % MOD;
147+
ans = (ans + f[i]) % mod;
144148
}
145149
return (int) ans;
146150
}
@@ -153,71 +157,79 @@ class Solution {
153157
class Solution {
154158
public:
155159
int numberOfGoodSubsets(vector<int>& nums) {
156-
vector<int> counter(31);
157-
for (int& x : nums) ++counter[x];
158-
vector<int> prime = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
159-
const int MOD = 1e9 + 7;
160-
int n = prime.size();
161-
vector<long long> dp(1 << n);
162-
dp[0] = 1;
163-
for (int x = 2; x <= 30; ++x) {
164-
if (counter[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) continue;
160+
int primes[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
161+
int cnt[31]{};
162+
for (int& x : nums) {
163+
++cnt[x];
164+
}
165+
int n = 10;
166+
const int mod = 1e9 + 7;
167+
vector<long long> f(1 << n);
168+
f[0] = 1;
169+
for (int i = 0; i < cnt[1]; ++i) {
170+
f[0] = f[0] * 2 % mod;
171+
}
172+
for (int x = 2; x < 31; ++x) {
173+
if (cnt[x] == 0 || x % 4 == 0 || x % 9 == 0 || x % 25 == 0) {
174+
continue;
175+
}
165176
int mask = 0;
166-
for (int i = 0; i < n; ++i)
167-
if (x % prime[i] == 0)
168-
mask |= (1 << i);
169-
for (int state = 0; state < 1 << n; ++state) {
170-
if ((mask & state) > 0) continue;
171-
dp[mask | state] = (dp[mask | state] + counter[x] * dp[state]) % MOD;
177+
for (int i = 0; i < n; ++i) {
178+
if (x % primes[i] == 0) {
179+
mask |= 1 << i;
180+
}
181+
}
182+
for (int state = (1 << n) - 1; state; --state) {
183+
if ((state & mask) == mask) {
184+
f[state] = (f[state] + 1LL * cnt[x] * f[state ^ mask]) % mod;
185+
}
172186
}
173187
}
174188
long long ans = 0;
175-
for (int i = 1; i < 1 << n; ++i) ans = (ans + dp[i]) % MOD;
176-
while (counter[1]--) ans = (ans << 1) % MOD;
177-
return (int)ans;
189+
for (int i = 1; i < 1 << n; ++i) {
190+
ans = (ans + f[i]) % mod;
191+
}
192+
return ans;
178193
}
179194
};
180195
```
181196
182197
### **Go**
183198
184199
```go
185-
func numberOfGoodSubsets(nums []int) int {
186-
counter := make([]int, 31)
200+
func numberOfGoodSubsets(nums []int) (ans int) {
201+
primes := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
202+
cnt := [31]int{}
187203
for _, x := range nums {
188-
counter[x]++
204+
cnt[x]++
189205
}
190206
const mod int = 1e9 + 7
191-
prime := []int{2, 3, 5, 7, 11, 13, 17, 19, 23, 29}
192-
n := len(prime)
193-
dp := make([]int, 1<<n)
194-
dp[0] = 1
195-
for x := 2; x <= 30; x++ {
196-
if counter[x] == 0 || x%4 == 0 || x%9 == 0 || x%25 == 0 {
207+
n := 10
208+
f := make([]int, 1<<n)
209+
f[0] = 1
210+
for i := 0; i < cnt[1]; i++ {
211+
f[0] = f[0] * 2 % mod
212+
}
213+
for x := 2; x < 31; x++ {
214+
if cnt[x] == 0 || x%4 == 0 || x%9 == 0 || x%25 == 0 {
197215
continue
198216
}
199217
mask := 0
200-
for i, p := range prime {
218+
for i, p := range primes {
201219
if x%p == 0 {
202-
mask |= (1 << i)
220+
mask |= 1 << i
203221
}
204222
}
205-
for state := 0; state < 1<<n; state++ {
206-
if (mask & state) > 0 {
207-
continue
223+
for state := 1<<n - 1; state > 0; state-- {
224+
if state&mask == mask {
225+
f[state] = (f[state] + f[state^mask]*cnt[x]) % mod
208226
}
209-
dp[mask|state] = (dp[mask|state] + counter[x]*dp[state]) % mod
210227
}
211228
}
212-
ans := 0
213229
for i := 1; i < 1<<n; i++ {
214-
ans = (ans + dp[i]) % mod
215-
}
216-
for counter[1] > 0 {
217-
ans = (ans << 1) % mod
218-
counter[1]--
230+
ans = (ans + f[i]) % mod
219231
}
220-
return ans
232+
return
221233
}
222234
```
223235

0 commit comments

Comments
 (0)