|
49 | 49 |
|
50 | 50 | <!-- 这里可写通用的实现逻辑 -->
|
51 | 51 |
|
| 52 | +**方法一:离散化 + 线段树 + 扫描线** |
| 53 | + |
| 54 | +线段树将整个区间分割为多个不连续的子区间,子区间的数量不超过 `log(width)`。更新某个元素的值,只需要更新 `log(width)` 个区间,并且这些区间都包含在一个包含该元素的大区间内。区间修改时,需要使用**懒标记**保证效率。 |
| 55 | + |
| 56 | +- 线段树的每个节点代表一个区间; |
| 57 | +- 线段树具有唯一的根节点,代表的区间是整个统计范围,如 `[1, N]`; |
| 58 | +- 线段树的每个叶子节点代表一个长度为 1 的元区间 `[x, x]`; |
| 59 | +- 对于每个内部节点 `[l, r]`,它的左儿子是 `[l, mid]`,右儿子是 `[mid + 1, r]`, 其中 `mid = ⌊(l + r) / 2⌋` (即向下取整)。 |
| 60 | + |
| 61 | +对于本题,线段树节点维护的信息有: |
| 62 | + |
| 63 | +1. 区间被覆盖的次数 cnt; |
| 64 | +1. 区间被覆盖的长度 len。 |
| 65 | + |
52 | 66 | <!-- tabs:start -->
|
53 | 67 |
|
54 | 68 | ### **Python3**
|
55 | 69 |
|
56 | 70 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
57 | 71 |
|
58 | 72 | ```python
|
| 73 | +class Node: |
| 74 | + def __init__(self): |
| 75 | + self.l = 0 |
| 76 | + self.r = 0 |
| 77 | + self.cnt = 0 |
| 78 | + self.length = 0 |
| 79 | + |
| 80 | + |
| 81 | +class SegmentTree: |
| 82 | + def __init__(self, nums): |
| 83 | + n = len(nums) - 1 |
| 84 | + self.nums = nums |
| 85 | + self.tr = [Node() for _ in range(n << 2)] |
| 86 | + self.build(1, 0, n - 1) |
| 87 | + |
| 88 | + def build(self, u, l, r): |
| 89 | + self.tr[u].l, self.tr[u].r = l, r |
| 90 | + if l != r: |
| 91 | + mid = (l + r) >> 1 |
| 92 | + self.build(u << 1, l, mid) |
| 93 | + self.build(u << 1 | 1, mid + 1, r) |
59 | 94 |
|
| 95 | + def modify(self, u, l, r, k): |
| 96 | + if self.tr[u].l >= l and self.tr[u].r <= r: |
| 97 | + self.tr[u].cnt += k |
| 98 | + else: |
| 99 | + mid = (self.tr[u].l + self.tr[u].r) >> 1 |
| 100 | + if l <= mid: |
| 101 | + self.modify(u << 1, l, r, k) |
| 102 | + if r > mid: |
| 103 | + self.modify(u << 1 | 1, l, r, k) |
| 104 | + self.pushup(u) |
| 105 | + |
| 106 | + def pushup(self, u): |
| 107 | + if self.tr[u].cnt: |
| 108 | + self.tr[u].length = self.nums[self.tr[u].r + 1] - \ |
| 109 | + self.nums[self.tr[u].l] |
| 110 | + elif self.tr[u].l == self.tr[u].r: |
| 111 | + self.tr[u].length = 0 |
| 112 | + else: |
| 113 | + self.tr[u].length = self.tr[u << 1].length + \ |
| 114 | + self.tr[u << 1 | 1].length |
| 115 | + |
| 116 | + @property |
| 117 | + def length(self): |
| 118 | + return self.tr[1].length |
| 119 | + |
| 120 | + |
| 121 | +class Solution: |
| 122 | + def rectangleArea(self, rectangles: List[List[int]]) -> int: |
| 123 | + segs = [] |
| 124 | + alls = set() |
| 125 | + for x1, y1, x2, y2 in rectangles: |
| 126 | + segs.append((x1, y1, y2, 1)) |
| 127 | + segs.append((x2, y1, y2, -1)) |
| 128 | + alls.add(y1) |
| 129 | + alls.add(y2) |
| 130 | + alls = sorted(alls) |
| 131 | + m = {v: i for i, v in enumerate(alls)} |
| 132 | + tree = SegmentTree(alls) |
| 133 | + segs.sort() |
| 134 | + ans = 0 |
| 135 | + for i, (x, y1, y2, k) in enumerate(segs): |
| 136 | + if i > 0: |
| 137 | + ans += tree.length * (x - segs[i - 1][0]) |
| 138 | + tree.modify(1, m[y1], m[y2] - 1, k) |
| 139 | + ans %= int(1e9 + 7) |
| 140 | + return ans |
60 | 141 | ```
|
61 | 142 |
|
62 | 143 | ### **Java**
|
63 | 144 |
|
64 | 145 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
65 | 146 |
|
66 | 147 | ```java
|
| 148 | +class Node { |
| 149 | + int l; |
| 150 | + int r; |
| 151 | + int cnt; |
| 152 | + int len; |
| 153 | +} |
| 154 | + |
| 155 | +class SegmentTree { |
| 156 | + private Node[] tr; |
| 157 | + private int[] nums; |
| 158 | + |
| 159 | + public SegmentTree(int[] nums) { |
| 160 | + int n = nums.length - 1; |
| 161 | + this.nums = nums; |
| 162 | + tr = new Node[n << 2]; |
| 163 | + for (int i = 0; i < tr.length; ++i) { |
| 164 | + tr[i] = new Node(); |
| 165 | + } |
| 166 | + build(1, 0, n - 1); |
| 167 | + } |
| 168 | + |
| 169 | + public void build(int u, int l, int r) { |
| 170 | + tr[u].l = l; |
| 171 | + tr[u].r = r; |
| 172 | + if (l != r) { |
| 173 | + int mid = (l + r) >> 1; |
| 174 | + build(u << 1, l, mid); |
| 175 | + build(u << 1 | 1, mid + 1, r); |
| 176 | + } |
| 177 | + } |
| 178 | + |
| 179 | + public void modify(int u, int l, int r, int k) { |
| 180 | + if (tr[u].l >= l && tr[u].r <= r) { |
| 181 | + tr[u].cnt += k; |
| 182 | + } else { |
| 183 | + int mid = (tr[u].l + tr[u].r) >> 1; |
| 184 | + if (l <= mid) { |
| 185 | + modify(u << 1, l, r, k); |
| 186 | + } |
| 187 | + if (r > mid) { |
| 188 | + modify(u << 1 | 1, l, r, k); |
| 189 | + } |
| 190 | + } |
| 191 | + pushup(u); |
| 192 | + } |
| 193 | + |
| 194 | + public int query() { |
| 195 | + return tr[1].len; |
| 196 | + } |
| 197 | + |
| 198 | + public void pushup(int u) { |
| 199 | + if (tr[u].cnt > 0) { |
| 200 | + tr[u].len = nums[tr[u].r + 1] - nums[tr[u].l]; |
| 201 | + } else if (tr[u].l == tr[u].r) { |
| 202 | + tr[u].len = 0; |
| 203 | + } else { |
| 204 | + tr[u].len = tr[u << 1].len + tr[u << 1 | 1].len; |
| 205 | + } |
| 206 | + } |
| 207 | +} |
| 208 | + |
| 209 | +class Solution { |
| 210 | + private static final int MOD = (int) 1e9 + 7; |
| 211 | + |
| 212 | + public int rectangleArea(int[][] rectangles) { |
| 213 | + int n = rectangles.length; |
| 214 | + int[][] segs = new int[n << 1][4]; |
| 215 | + int idx = 0; |
| 216 | + TreeSet<Integer> ts = new TreeSet<>(); |
| 217 | + for (int[] rect : rectangles) { |
| 218 | + int x1 = rect[0], y1 = rect[1], x2 = rect[2], y2 = rect[3]; |
| 219 | + segs[idx++] = new int[]{x1, y1, y2, 1}; |
| 220 | + segs[idx++] = new int[]{x2, y1, y2, -1}; |
| 221 | + ts.add(y1); |
| 222 | + ts.add(y2); |
| 223 | + } |
| 224 | + Map<Integer, Integer> m = new HashMap<>(); |
| 225 | + int[] nums = new int[ts.size()]; |
| 226 | + idx = 0; |
| 227 | + for (int v : ts) { |
| 228 | + nums[idx] = v; |
| 229 | + m.put(v, idx++); |
| 230 | + } |
| 231 | + Arrays.sort(segs, Comparator.comparingInt(a -> a[0])); |
| 232 | + SegmentTree tree = new SegmentTree(nums); |
| 233 | + long ans = 0; |
| 234 | + for (int i = 0; i < segs.length; ++i) { |
| 235 | + int x = segs[i][0], y1 = segs[i][1], y2 = segs[i][2], k = segs[i][3]; |
| 236 | + if (i > 0) { |
| 237 | + ans += (long) tree.query() * (x - segs[i - 1][0]); |
| 238 | + } |
| 239 | + tree.modify(1, m.get(y1), m.get(y2) - 1, k); |
| 240 | + } |
| 241 | + ans %= MOD; |
| 242 | + return (int) ans; |
| 243 | + } |
| 244 | +} |
| 245 | +``` |
| 246 | + |
| 247 | +### **C++** |
| 248 | + |
| 249 | +```cpp |
| 250 | +class Node { |
| 251 | +public: |
| 252 | + int l, r, cnt, len; |
| 253 | +}; |
| 254 | + |
| 255 | +class SegmentTree { |
| 256 | +private: |
| 257 | + vector<Node*> tr; |
| 258 | + vector<int> nums; |
| 259 | + |
| 260 | +public: |
| 261 | + SegmentTree(vector<int>& nums) { |
| 262 | + int n = nums.size() - 1; |
| 263 | + this->nums = nums; |
| 264 | + tr.resize(n << 2); |
| 265 | + for (int i = 0; i < tr.size(); ++i) tr[i] = new Node(); |
| 266 | + build(1, 0, n - 1); |
| 267 | + } |
| 268 | + |
| 269 | + void build(int u, int l, int r) { |
| 270 | + tr[u]->l = l; |
| 271 | + tr[u]->r = r; |
| 272 | + if (l != r) |
| 273 | + { |
| 274 | + int mid = (l + r) >> 1; |
| 275 | + build(u << 1, l, mid); |
| 276 | + build(u << 1 | 1, mid + 1, r); |
| 277 | + } |
| 278 | + } |
| 279 | + |
| 280 | + void modify(int u, int l, int r, int k) { |
| 281 | + if (tr[u]->l >= l && tr[u]->r <= r) tr[u]->cnt += k; |
| 282 | + else |
| 283 | + { |
| 284 | + int mid = (tr[u]->l + tr[u]->r) >> 1; |
| 285 | + if (l <= mid) modify(u << 1, l, r, k); |
| 286 | + if (r > mid) modify(u << 1 | 1, l, r, k); |
| 287 | + } |
| 288 | + pushup(u); |
| 289 | + } |
| 290 | + |
| 291 | + int query() { |
| 292 | + return tr[1]->len; |
| 293 | + } |
| 294 | + |
| 295 | + void pushup(int u) { |
| 296 | + if (tr[u]->cnt) tr[u]->len = nums[tr[u]->r + 1] - nums[tr[u]->l]; |
| 297 | + else if (tr[u]->l == tr[u]->r) tr[u]->len = 0; |
| 298 | + else tr[u]->len = tr[u << 1]->len + tr[u << 1 | 1]->len; |
| 299 | + } |
| 300 | +}; |
67 | 301 |
|
| 302 | +class Solution { |
| 303 | +public: |
| 304 | + int rectangleArea(vector<vector<int>>& rectangles) { |
| 305 | + int n = rectangles.size(); |
| 306 | + vector<vector<int>> segs; |
| 307 | + set<int> ts; |
| 308 | + int mod = 1e9 + 7; |
| 309 | + for (auto& rect : rectangles) |
| 310 | + { |
| 311 | + int x1 = rect[0], y1 = rect[1], x2 = rect[2], y2 = rect[3]; |
| 312 | + segs.push_back({x1, y1, y2, 1}); |
| 313 | + segs.push_back({x2, y1, y2, -1}); |
| 314 | + ts.insert(y1); |
| 315 | + ts.insert(y2); |
| 316 | + } |
| 317 | + unordered_map<int, int> m; |
| 318 | + int idx = 0; |
| 319 | + for (int v : ts) m[v] = idx++; |
| 320 | + sort(segs.begin(), segs.end()); |
| 321 | + vector<int> nums(ts.begin(), ts.end()); |
| 322 | + SegmentTree* tree = new SegmentTree(nums); |
| 323 | + long long ans = 0; |
| 324 | + for (int i = 0; i < segs.size(); ++i) |
| 325 | + { |
| 326 | + int x = segs[i][0], y1 = segs[i][1], y2 = segs[i][2], k = segs[i][3]; |
| 327 | + if (i > 0) ans += (long long) tree->query() * (x - segs[i - 1][0]); |
| 328 | + tree->modify(1, m[y1], m[y2] - 1, k); |
| 329 | + } |
| 330 | + ans %= mod; |
| 331 | + return (int) ans; |
| 332 | + } |
| 333 | +}; |
68 | 334 | ```
|
69 | 335 |
|
70 | 336 | ### **...**
|
|
0 commit comments