Skip to content

Commit 265c110

Browse files
committed
Pushing the docs to 0.22/ for branch: 0.22.X, commit 97b8b09416de2e8fce806192f52f3233df5782af
1 parent 01f1bea commit 265c110

File tree

1,210 files changed

+3746
-3770
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,210 files changed

+3746
-3770
lines changed

0.22/_downloads/00a5ddd24a9ad44708f4ab3b157ef0ff/plot_stack_predictors.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -99,7 +99,7 @@ def plot_regression_results(ax, y_true, y_pred, title, scores, elapsed_time):
9999
score = cross_validate(est, X, y,
100100
scoring=['r2', 'neg_mean_absolute_error'],
101101
n_jobs=-1, verbose=0)
102-
elapsed_time = time.time() - time.time()
102+
elapsed_time = time.time() - start_time
103103

104104
y_pred = cross_val_predict(est, X, y, n_jobs=-1, verbose=0)
105105
plot_regression_results(
Binary file not shown.

0.22/_downloads/cef4e9221dbf2e80aa757cadeba0ee6c/plot_stack_predictors.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@
8080
},
8181
"outputs": [],
8282
"source": [
83-
"import time\nimport numpy as np\nfrom sklearn.datasets import load_boston\nfrom sklearn.model_selection import cross_validate, cross_val_predict\n\nX, y = load_boston(return_X_y=True)\n\nfig, axs = plt.subplots(2, 2, figsize=(9, 7))\naxs = np.ravel(axs)\n\nfor ax, (name, est) in zip(axs, estimators + [('Stacking Regressor',\n stacking_regressor)]):\n start_time = time.time()\n score = cross_validate(est, X, y,\n scoring=['r2', 'neg_mean_absolute_error'],\n n_jobs=-1, verbose=0)\n elapsed_time = time.time() - time.time()\n\n y_pred = cross_val_predict(est, X, y, n_jobs=-1, verbose=0)\n plot_regression_results(\n ax, y, y_pred,\n name,\n (r'$R^2={:.2f} \\pm {:.2f}$' + '\\n' + r'$MAE={:.2f} \\pm {:.2f}$')\n .format(np.mean(score['test_r2']),\n np.std(score['test_r2']),\n -np.mean(score['test_neg_mean_absolute_error']),\n np.std(score['test_neg_mean_absolute_error'])),\n elapsed_time)\n\nplt.suptitle('Single predictors versus stacked predictors')\nplt.tight_layout()\nplt.subplots_adjust(top=0.9)\nplt.show()"
83+
"import time\nimport numpy as np\nfrom sklearn.datasets import load_boston\nfrom sklearn.model_selection import cross_validate, cross_val_predict\n\nX, y = load_boston(return_X_y=True)\n\nfig, axs = plt.subplots(2, 2, figsize=(9, 7))\naxs = np.ravel(axs)\n\nfor ax, (name, est) in zip(axs, estimators + [('Stacking Regressor',\n stacking_regressor)]):\n start_time = time.time()\n score = cross_validate(est, X, y,\n scoring=['r2', 'neg_mean_absolute_error'],\n n_jobs=-1, verbose=0)\n elapsed_time = time.time() - start_time\n\n y_pred = cross_val_predict(est, X, y, n_jobs=-1, verbose=0)\n plot_regression_results(\n ax, y, y_pred,\n name,\n (r'$R^2={:.2f} \\pm {:.2f}$' + '\\n' + r'$MAE={:.2f} \\pm {:.2f}$')\n .format(np.mean(score['test_r2']),\n np.std(score['test_r2']),\n -np.mean(score['test_neg_mean_absolute_error']),\n np.std(score['test_neg_mean_absolute_error'])),\n elapsed_time)\n\nplt.suptitle('Single predictors versus stacked predictors')\nplt.tight_layout()\nplt.subplots_adjust(top=0.9)\nplt.show()"
8484
]
8585
},
8686
{
Binary file not shown.

0.22/_downloads/scikit-learn-docs.pdf

27.8 KB
Binary file not shown.

0.22/_images/iris.png

0 Bytes

0 commit comments

Comments
 (0)