Skip to content

Commit 5edb918

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 0ee92d87ee43911f4c8422c69107a75b7491db5c
1 parent fbcfe2b commit 5edb918

File tree

901 files changed

+2737
-2728
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

901 files changed

+2737
-2728
lines changed
116 Bytes
Binary file not shown.
113 Bytes
Binary file not shown.

dev/_downloads/plot_classifier_comparison.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
"execution_count": null,
2525
"cell_type": "code",
2626
"source": [
27-
"print(__doc__)\n\n\n# Code source: Ga\u00ebl Varoquaux\n# Andreas M\u00fcller\n# Modified for documentation by Jaques Grobler\n# License: BSD 3 clause\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom matplotlib.colors import ListedColormap\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.datasets import make_moons, make_circles, make_classification\nfrom sklearn.neural_network import MLPClassifier\nfrom sklearn.neighbors import KNeighborsClassifier\nfrom sklearn.svm import SVC\nfrom sklearn.gaussian_process import GaussianProcessClassifier\nfrom sklearn.gaussian_process.kernels import RBF\nfrom sklearn.tree import DecisionTreeClassifier\nfrom sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\nfrom sklearn.naive_bayes import GaussianNB\nfrom sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis\n\nh = .02 # step size in the mesh\n\nnames = [\"Nearest Neighbors\", \"Linear SVM\", \"RBF SVM\", \"Gaussian Process\",\n \"Decision Tree\", \"Random Forest\", \"Neural Net\", \"AdaBoost\",\n \"Naive Bayes\", \"QDA\"]\n\nclassifiers = [\n KNeighborsClassifier(3),\n SVC(kernel=\"linear\", C=0.025),\n SVC(gamma=2, C=1),\n GaussianProcessClassifier(1.0 * RBF(1.0), warm_start=True),\n DecisionTreeClassifier(max_depth=5),\n RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),\n MLPClassifier(alpha=1),\n AdaBoostClassifier(),\n GaussianNB(),\n QuadraticDiscriminantAnalysis()]\n\nX, y = make_classification(n_features=2, n_redundant=0, n_informative=2,\n random_state=1, n_clusters_per_class=1)\nrng = np.random.RandomState(2)\nX += 2 * rng.uniform(size=X.shape)\nlinearly_separable = (X, y)\n\ndatasets = [make_moons(noise=0.3, random_state=0),\n make_circles(noise=0.2, factor=0.5, random_state=1),\n linearly_separable\n ]\n\nfigure = plt.figure(figsize=(27, 9))\ni = 1\n# iterate over datasets\nfor ds_cnt, ds in enumerate(datasets):\n # preprocess dataset, split into training and test part\n X, y = ds\n X = StandardScaler().fit_transform(X)\n X_train, X_test, y_train, y_test = \\\n train_test_split(X, y, test_size=.4, random_state=42)\n\n x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n np.arange(y_min, y_max, h))\n\n # just plot the dataset first\n cm = plt.cm.RdBu\n cm_bright = ListedColormap(['#FF0000', '#0000FF'])\n ax = plt.subplot(len(datasets), len(classifiers) + 1, i)\n if ds_cnt == 0:\n ax.set_title(\"Input data\")\n # Plot the training points\n ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)\n # and testing points\n ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)\n ax.set_xlim(xx.min(), xx.max())\n ax.set_ylim(yy.min(), yy.max())\n ax.set_xticks(())\n ax.set_yticks(())\n i += 1\n\n # iterate over classifiers\n for name, clf in zip(names, classifiers):\n ax = plt.subplot(len(datasets), len(classifiers) + 1, i)\n clf.fit(X_train, y_train)\n score = clf.score(X_test, y_test)\n\n # Plot the decision boundary. For that, we will assign a color to each\n # point in the mesh [x_min, x_max]x[y_min, y_max].\n if hasattr(clf, \"decision_function\"):\n Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])\n else:\n Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]\n\n # Put the result into a color plot\n Z = Z.reshape(xx.shape)\n ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)\n\n # Plot also the training points\n ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)\n # and testing points\n ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,\n alpha=0.6)\n\n ax.set_xlim(xx.min(), xx.max())\n ax.set_ylim(yy.min(), yy.max())\n ax.set_xticks(())\n ax.set_yticks(())\n if ds_cnt == 0:\n ax.set_title(name)\n ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),\n size=15, horizontalalignment='right')\n i += 1\n\nplt.tight_layout()\nplt.show()"
27+
"print(__doc__)\n\n\n# Code source: Ga\u00ebl Varoquaux\n# Andreas M\u00fcller\n# Modified for documentation by Jaques Grobler\n# License: BSD 3 clause\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom matplotlib.colors import ListedColormap\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.datasets import make_moons, make_circles, make_classification\nfrom sklearn.neural_network import MLPClassifier\nfrom sklearn.neighbors import KNeighborsClassifier\nfrom sklearn.svm import SVC\nfrom sklearn.gaussian_process import GaussianProcessClassifier\nfrom sklearn.gaussian_process.kernels import RBF\nfrom sklearn.tree import DecisionTreeClassifier\nfrom sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier\nfrom sklearn.naive_bayes import GaussianNB\nfrom sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis\n\nh = .02 # step size in the mesh\n\nnames = [\"Nearest Neighbors\", \"Linear SVM\", \"RBF SVM\", \"Gaussian Process\",\n \"Decision Tree\", \"Random Forest\", \"Neural Net\", \"AdaBoost\",\n \"Naive Bayes\", \"QDA\"]\n\nclassifiers = [\n KNeighborsClassifier(3),\n SVC(kernel=\"linear\", C=0.025),\n SVC(gamma=2, C=1),\n GaussianProcessClassifier(1.0 * RBF(1.0), warm_start=True),\n DecisionTreeClassifier(max_depth=5),\n RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),\n MLPClassifier(alpha=1),\n AdaBoostClassifier(),\n GaussianNB(),\n QuadraticDiscriminantAnalysis()]\n\nX, y = make_classification(n_features=2, n_redundant=0, n_informative=2,\n random_state=1, n_clusters_per_class=1)\nrng = np.random.RandomState(2)\nX += 2 * rng.uniform(size=X.shape)\nlinearly_separable = (X, y)\n\ndatasets = [make_moons(noise=0.3, random_state=0),\n make_circles(noise=0.2, factor=0.5, random_state=1),\n linearly_separable\n ]\n\nfigure = plt.figure(figsize=(27, 9))\ni = 1\n# iterate over datasets\nfor ds_cnt, ds in enumerate(datasets):\n # preprocess dataset, split into training and test part\n X, y = ds\n X = StandardScaler().fit_transform(X)\n X_train, X_test, y_train, y_test = \\\n train_test_split(X, y, test_size=.4, random_state=42)\n\n x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5\n y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5\n xx, yy = np.meshgrid(np.arange(x_min, x_max, h),\n np.arange(y_min, y_max, h))\n\n # just plot the dataset first\n cm = plt.cm.RdBu\n cm_bright = ListedColormap(['#FF0000', '#0000FF'])\n ax = plt.subplot(len(datasets), len(classifiers) + 1, i)\n if ds_cnt == 0:\n ax.set_title(\"Input data\")\n # Plot the training points\n ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,\n edgecolors='k')\n # and testing points\n ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,\n edgecolors='k')\n ax.set_xlim(xx.min(), xx.max())\n ax.set_ylim(yy.min(), yy.max())\n ax.set_xticks(())\n ax.set_yticks(())\n i += 1\n\n # iterate over classifiers\n for name, clf in zip(names, classifiers):\n ax = plt.subplot(len(datasets), len(classifiers) + 1, i)\n clf.fit(X_train, y_train)\n score = clf.score(X_test, y_test)\n\n # Plot the decision boundary. For that, we will assign a color to each\n # point in the mesh [x_min, x_max]x[y_min, y_max].\n if hasattr(clf, \"decision_function\"):\n Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])\n else:\n Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]\n\n # Put the result into a color plot\n Z = Z.reshape(xx.shape)\n ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)\n\n # Plot also the training points\n ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,\n edgecolors='k')\n # and testing points\n ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,\n edgecolors='k', alpha=0.6)\n\n ax.set_xlim(xx.min(), xx.max())\n ax.set_ylim(yy.min(), yy.max())\n ax.set_xticks(())\n ax.set_yticks(())\n if ds_cnt == 0:\n ax.set_title(name)\n ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),\n size=15, horizontalalignment='right')\n i += 1\n\nplt.tight_layout()\nplt.show()"
2828
],
2929
"outputs": [],
3030
"metadata": {

dev/_downloads/plot_classifier_comparison.py

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -95,9 +95,11 @@
9595
if ds_cnt == 0:
9696
ax.set_title("Input data")
9797
# Plot the training points
98-
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
98+
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
99+
edgecolors='k')
99100
# and testing points
100-
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
101+
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6,
102+
edgecolors='k')
101103
ax.set_xlim(xx.min(), xx.max())
102104
ax.set_ylim(yy.min(), yy.max())
103105
ax.set_xticks(())
@@ -122,10 +124,11 @@
122124
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
123125

124126
# Plot also the training points
125-
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
127+
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright,
128+
edgecolors='k')
126129
# and testing points
127130
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
128-
alpha=0.6)
131+
edgecolors='k', alpha=0.6)
129132

130133
ax.set_xlim(xx.min(), xx.max())
131134
ax.set_ylim(yy.min(), yy.max())

dev/_downloads/scikit-learn-docs.pdf

115 KB
Binary file not shown.

0 commit comments

Comments
 (0)