Skip to content

Commit 832c826

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 0ab5c678bba02888b62b777b4c757e367b3458d5
1 parent a674104 commit 832c826

File tree

936 files changed

+2881
-2864
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

936 files changed

+2881
-2864
lines changed
114 Bytes
Binary file not shown.
111 Bytes
Binary file not shown.

dev/_downloads/plot_ols.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
"execution_count": null,
2525
"cell_type": "code",
2626
"source": [
27-
"print(__doc__)\n\n\n# Code source: Jaques Grobler\n# License: BSD 3 clause\n\n\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom sklearn import datasets, linear_model\n\n# Load the diabetes dataset\ndiabetes = datasets.load_diabetes()\n\n\n# Use only one feature\ndiabetes_X = diabetes.data[:, np.newaxis, 2]\n\n# Split the data into training/testing sets\ndiabetes_X_train = diabetes_X[:-20]\ndiabetes_X_test = diabetes_X[-20:]\n\n# Split the targets into training/testing sets\ndiabetes_y_train = diabetes.target[:-20]\ndiabetes_y_test = diabetes.target[-20:]\n\n# Create linear regression object\nregr = linear_model.LinearRegression()\n\n# Train the model using the training sets\nregr.fit(diabetes_X_train, diabetes_y_train)\n\n# The coefficients\nprint('Coefficients: \\n', regr.coef_)\n# The mean squared error\nprint(\"Mean squared error: %.2f\"\n % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2))\n# Explained variance score: 1 is perfect prediction\nprint('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test))\n\n# Plot outputs\nplt.scatter(diabetes_X_test, diabetes_y_test, color='black')\nplt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue',\n linewidth=3)\n\nplt.xticks(())\nplt.yticks(())\n\nplt.show()"
27+
"print(__doc__)\n\n\n# Code source: Jaques Grobler\n# License: BSD 3 clause\n\n\nimport matplotlib.pyplot as plt\nimport numpy as np\nfrom sklearn import datasets, linear_model\nfrom sklearn.metrics import mean_squared_error, r2_score\n\n# Load the diabetes dataset\ndiabetes = datasets.load_diabetes()\n\n\n# Use only one feature\ndiabetes_X = diabetes.data[:, np.newaxis, 2]\n\n# Split the data into training/testing sets\ndiabetes_X_train = diabetes_X[:-20]\ndiabetes_X_test = diabetes_X[-20:]\n\n# Split the targets into training/testing sets\ndiabetes_y_train = diabetes.target[:-20]\ndiabetes_y_test = diabetes.target[-20:]\n\n# Create linear regression object\nregr = linear_model.LinearRegression()\n\n# Train the model using the training sets\nregr.fit(diabetes_X_train, diabetes_y_train)\n\n# Make predictions using the testing set\ndiabetes_y_pred = regr.predict(diabetes_X_test)\n\n# The coefficients\nprint('Coefficients: \\n', regr.coef_)\n# The mean squared error\nprint(\"Mean squared error: %.2f\"\n % mean_squared_error(diabetes_y_test, diabetes_y_pred))\n# Explained variance score: 1 is perfect prediction\nprint('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))\n\n# Plot outputs\nplt.scatter(diabetes_X_test, diabetes_y_test, color='black')\nplt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)\n\nplt.xticks(())\nplt.yticks(())\n\nplt.show()"
2828
],
2929
"outputs": [],
3030
"metadata": {

dev/_downloads/plot_ols.py

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,7 @@
2626
import matplotlib.pyplot as plt
2727
import numpy as np
2828
from sklearn import datasets, linear_model
29+
from sklearn.metrics import mean_squared_error, r2_score
2930

3031
# Load the diabetes dataset
3132
diabetes = datasets.load_diabetes()
@@ -48,18 +49,20 @@
4849
# Train the model using the training sets
4950
regr.fit(diabetes_X_train, diabetes_y_train)
5051

52+
# Make predictions using the testing set
53+
diabetes_y_pred = regr.predict(diabetes_X_test)
54+
5155
# The coefficients
5256
print('Coefficients: \n', regr.coef_)
5357
# The mean squared error
5458
print("Mean squared error: %.2f"
55-
% np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2))
59+
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
5660
# Explained variance score: 1 is perfect prediction
57-
print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test))
61+
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))
5862

5963
# Plot outputs
6064
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
61-
plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue',
62-
linewidth=3)
65+
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
6366

6467
plt.xticks(())
6568
plt.yticks(())

dev/_downloads/scikit-learn-docs.pdf

11 KB
Binary file not shown.
124 Bytes
124 Bytes
-218 Bytes
-218 Bytes
-117 Bytes

0 commit comments

Comments
 (0)