|
53 | 53 |
|
54 | 54 | <!-- 这里可写通用的实现逻辑 -->
|
55 | 55 |
|
| 56 | +**方法一:记忆化搜索** |
| 57 | + |
| 58 | +我们设计一个函数 $dfs(i)$,表示当前分数为 $i$ 时,到最终停止抽取数字时,分数不超过 $n$ 的概率。那么答案就是 $dfs(0)$。 |
| 59 | + |
| 60 | +函数 $dfs(i)$ 的计算方法如下: |
| 61 | + |
| 62 | +- 如果 $i \ge k$,那么停止抽取数字,如果 $i \le n$,返回 $1$,否则返回 $0$; |
| 63 | +- 否则,可以在 $[1,..maxPts]$ 范围内抽取下一个数字 $j$,那么 $dfs(i) = \frac{1}{maxPts} \sum_{j=1}^{maxPts} dfs(i+j)$。 |
| 64 | + |
| 65 | +这里我们可以使用记忆化搜索来加速计算。 |
| 66 | + |
| 67 | +以上方法的时间复杂度为 $O(k \times maxPts)$,会超出时间限制,我们需要优化一下。 |
| 68 | + |
| 69 | +当 $i \lt k$ 时,以下等式成立: |
| 70 | + |
| 71 | +$$ |
| 72 | +\begin{aligned} |
| 73 | +dfs(i) &= (dfs(i + 1) + dfs(i + 2) + \cdots + dfs(i + maxPts)) / maxPts & (1) |
| 74 | +\end{aligned} |
| 75 | +$$ |
| 76 | + |
| 77 | +当 $i \lt k - 1$ 时,以下等式成立: |
| 78 | + |
| 79 | +$$ |
| 80 | +\begin{aligned} |
| 81 | +dfs(i+1) &= (dfs(i + 2) + dfs(i + 3) + \cdots + dfs(i + maxPts + 1)) / maxPts & (2) |
| 82 | +\end{aligned} |
| 83 | +$$ |
| 84 | + |
| 85 | +因此,当 $i \lt k-1$ 时,我们将等式 $(1)$ 减去等式 $(2)$,得到: |
| 86 | + |
| 87 | +$$ |
| 88 | +\begin{aligned} |
| 89 | +dfs(i) - dfs(i+1) &= (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts |
| 90 | +\end{aligned} |
| 91 | +$$ |
| 92 | + |
| 93 | +即: |
| 94 | + |
| 95 | +$$ |
| 96 | +\begin{aligned} |
| 97 | +dfs(i) &= dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts |
| 98 | +\end{aligned} |
| 99 | +$$ |
| 100 | + |
| 101 | +如果 $i=k-1$,有: |
| 102 | + |
| 103 | +$$ |
| 104 | +\begin{aligned} |
| 105 | +dfs(i) &= dfs(k - 1) &= dfs(k) + dfs(k + 1) + \cdots + dfs(k + maxPts - 1) / maxPts & (3) |
| 106 | +\end{aligned} |
| 107 | +$$ |
| 108 | + |
| 109 | +我们假设有 $i$ 个数不超过 $n$,那么 $k+i-1 \leq n$,又因为 $i\leq maxPts$,所以 $i \leq \min(n-k+1, maxPts)$,因此等式 $(3)$ 可以写成: |
| 110 | + |
| 111 | +$$ |
| 112 | +\begin{aligned} |
| 113 | +dfs(k-1) &= \min(n-k+1, maxPts) / maxPts |
| 114 | +\end{aligned} |
| 115 | +$$ |
| 116 | + |
| 117 | +综上所述,有以下状态转移方程: |
| 118 | + |
| 119 | +$$ |
| 120 | +\begin{aligned} |
| 121 | +dfs(i) &= \begin{cases} |
| 122 | +1, & i \geq k, i \leq n \\ |
| 123 | +0, & i \geq k, i \gt n \\ |
| 124 | +\min(n-k+1, maxPts) / maxPts, & i = k - 1 \\ |
| 125 | +dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts, & i < k - 1 |
| 126 | +\end{cases} |
| 127 | +\end{aligned} |
| 128 | +$$ |
| 129 | + |
| 130 | +时间复杂度 $O(k)$,空间复杂度 $O(k)$。其中 $k$ 为最大分数。 |
| 131 | + |
| 132 | +**方法二:动态规划** |
| 133 | + |
| 134 | +我们可以将方法一中的记忆化搜索改成动态规划。 |
| 135 | + |
| 136 | +定义 $f[i]$ 表示当前分数为 $i$ 时,到最终停止抽取数字时,分数不超过 $n$ 的概率。那么答案就是 $f[0]$。 |
| 137 | + |
| 138 | +当 $k \leq i \leq \min(n, k + maxPts - 1)$ 时,有 $f[i] = 1$。 |
| 139 | + |
| 140 | +当 $i = k - 1$ 时,有 $f[i] = \min(n-k+1, maxPts) / maxPts$。 |
| 141 | + |
| 142 | +当 $i \lt k - 1$ 时,有 $f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts$。 |
| 143 | + |
| 144 | +时间复杂度 $O(k)$,空间复杂度 $O(k)$。其中 $k$ 为最大分数。 |
| 145 | + |
56 | 146 | <!-- tabs:start -->
|
57 | 147 |
|
58 | 148 | ### **Python3**
|
59 | 149 |
|
60 | 150 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
61 | 151 |
|
62 | 152 | ```python
|
| 153 | +class Solution: |
| 154 | + def new21Game(self, n: int, k: int, maxPts: int) -> float: |
| 155 | + @cache |
| 156 | + def dfs(i: int) -> float: |
| 157 | + if i >= k: |
| 158 | + return int(i <= n) |
| 159 | + if i == k - 1: |
| 160 | + return min(n - k + 1, maxPts) / maxPts |
| 161 | + return dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts |
| 162 | + |
| 163 | + return dfs(0) |
| 164 | +``` |
63 | 165 |
|
| 166 | +```python |
| 167 | +class Solution: |
| 168 | + def new21Game(self, n: int, k: int, maxPts: int) -> float: |
| 169 | + f = [0] * (k + maxPts) |
| 170 | + for i in range(k, min(n + 1, k + maxPts)): |
| 171 | + f[i] = 1 |
| 172 | + f[k - 1] = min(n - k + 1, maxPts) / maxPts |
| 173 | + for i in range(k - 2, -1, -1): |
| 174 | + f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts |
| 175 | + return f[0] |
64 | 176 | ```
|
65 | 177 |
|
66 | 178 | ### **Java**
|
67 | 179 |
|
68 | 180 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
69 | 181 |
|
70 | 182 | ```java
|
| 183 | +class Solution { |
| 184 | + private double[] f; |
| 185 | + private int n, k, maxPts; |
| 186 | + |
| 187 | + public double new21Game(int n, int k, int maxPts) { |
| 188 | + f = new double[k]; |
| 189 | + this.n = n; |
| 190 | + this.k = k; |
| 191 | + this.maxPts = maxPts; |
| 192 | + return dfs(0); |
| 193 | + } |
| 194 | + |
| 195 | + private double dfs(int i) { |
| 196 | + if (i >= k) { |
| 197 | + return i <= n ? 1 : 0; |
| 198 | + } |
| 199 | + if (i == k - 1) { |
| 200 | + return Math.min(n - k + 1, maxPts) * 1.0 / maxPts; |
| 201 | + } |
| 202 | + if (f[i] != 0) { |
| 203 | + return f[i]; |
| 204 | + } |
| 205 | + return f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts; |
| 206 | + } |
| 207 | +} |
| 208 | +``` |
| 209 | + |
| 210 | +```java |
| 211 | +class Solution { |
| 212 | + public double new21Game(int n, int k, int maxPts) { |
| 213 | + if (k == 0) { |
| 214 | + return 1.0; |
| 215 | + } |
| 216 | + double[] f = new double[k + maxPts]; |
| 217 | + for (int i = k; i < Math.min(n + 1, k + maxPts); ++i) { |
| 218 | + f[i] = 1; |
| 219 | + } |
| 220 | + f[k - 1] = Math.min(n - k + 1, maxPts) * 1.0 / maxPts; |
| 221 | + for (int i = k - 2; i >= 0; --i) { |
| 222 | + f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts; |
| 223 | + } |
| 224 | + return f[0]; |
| 225 | + } |
| 226 | +} |
| 227 | +``` |
| 228 | + |
| 229 | +### **C++** |
| 230 | + |
| 231 | +```cpp |
| 232 | +class Solution { |
| 233 | +public: |
| 234 | + double new21Game(int n, int k, int maxPts) { |
| 235 | + vector<double> f(k); |
| 236 | + function<double(int)> dfs = [&](int i) -> double { |
| 237 | + if (i >= k) { |
| 238 | + return i <= n ? 1 : 0; |
| 239 | + } |
| 240 | + if (i == k - 1) { |
| 241 | + return min(n - k + 1, maxPts) * 1.0 / maxPts; |
| 242 | + } |
| 243 | + if (f[i]) { |
| 244 | + return f[i]; |
| 245 | + } |
| 246 | + return f[i] = dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts; |
| 247 | + }; |
| 248 | + return dfs(0); |
| 249 | + } |
| 250 | +}; |
| 251 | +``` |
| 252 | +
|
| 253 | +```cpp |
| 254 | +class Solution { |
| 255 | +public: |
| 256 | + double new21Game(int n, int k, int maxPts) { |
| 257 | + if (k == 0) { |
| 258 | + return 1.0; |
| 259 | + } |
| 260 | + double f[k + maxPts]; |
| 261 | + memset(f, 0, sizeof(f)); |
| 262 | + for (int i = k; i < min(n + 1, k + maxPts); ++i) { |
| 263 | + f[i] = 1; |
| 264 | + } |
| 265 | + f[k - 1] = min(n - k + 1, maxPts) * 1.0 / maxPts; |
| 266 | + for (int i = k - 2; i >= 0; --i) { |
| 267 | + f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts; |
| 268 | + } |
| 269 | + return f[0]; |
| 270 | + } |
| 271 | +}; |
| 272 | +``` |
| 273 | + |
| 274 | +### **Go** |
| 275 | + |
| 276 | +```go |
| 277 | +func new21Game(n int, k int, maxPts int) float64 { |
| 278 | + f := make([]float64, k) |
| 279 | + var dfs func(int) float64 |
| 280 | + dfs = func(i int) float64 { |
| 281 | + if i >= k { |
| 282 | + if i <= n { |
| 283 | + return 1 |
| 284 | + } |
| 285 | + return 0 |
| 286 | + } |
| 287 | + if i == k-1 { |
| 288 | + return float64(min(n-k+1, maxPts)) / float64(maxPts) |
| 289 | + } |
| 290 | + if f[i] > 0 { |
| 291 | + return f[i] |
| 292 | + } |
| 293 | + f[i] = dfs(i+1) + (dfs(i+1)-dfs(i+maxPts+1))/float64(maxPts) |
| 294 | + return f[i] |
| 295 | + } |
| 296 | + return dfs(0) |
| 297 | +} |
71 | 298 |
|
| 299 | +func min(a, b int) int { |
| 300 | + if a < b { |
| 301 | + return a |
| 302 | + } |
| 303 | + return b |
| 304 | +} |
| 305 | +``` |
| 306 | + |
| 307 | +```go |
| 308 | +func new21Game(n int, k int, maxPts int) float64 { |
| 309 | + if k == 0 { |
| 310 | + return 1 |
| 311 | + } |
| 312 | + f := make([]float64, k+maxPts) |
| 313 | + for i := k; i < min(n+1, k+maxPts); i++ { |
| 314 | + f[i] = 1 |
| 315 | + } |
| 316 | + f[k-1] = float64(min(n-k+1, maxPts)) / float64(maxPts) |
| 317 | + for i := k - 2; i >= 0; i-- { |
| 318 | + f[i] = f[i+1] + (f[i+1]-f[i+maxPts+1])/float64(maxPts) |
| 319 | + } |
| 320 | + return f[0] |
| 321 | +} |
| 322 | + |
| 323 | +func min(a, b int) int { |
| 324 | + if a < b { |
| 325 | + return a |
| 326 | + } |
| 327 | + return b |
| 328 | +} |
72 | 329 | ```
|
73 | 330 |
|
74 | 331 | ### **TypeScript**
|
75 | 332 |
|
76 | 333 | ```ts
|
77 | 334 | function new21Game(n: number, k: number, maxPts: number): number {
|
78 |
| - if (!k) return 1.0; |
79 |
| - let dp = new Array(k + maxPts).fill(0.0); |
80 |
| - for (let i = k; i <= n && i < k + maxPts; i++) { |
81 |
| - dp[i] = 1.0; |
| 335 | + const f = new Array(k).fill(0); |
| 336 | + const dfs = (i: number): number => { |
| 337 | + if (i >= k) { |
| 338 | + return i <= n ? 1 : 0; |
| 339 | + } |
| 340 | + if (i === k - 1) { |
| 341 | + return Math.min(n - k + 1, maxPts) / maxPts; |
| 342 | + } |
| 343 | + if (f[i] !== 0) { |
| 344 | + return f[i]; |
| 345 | + } |
| 346 | + return (f[i] = |
| 347 | + dfs(i + 1) + (dfs(i + 1) - dfs(i + maxPts + 1)) / maxPts); |
| 348 | + }; |
| 349 | + return dfs(0); |
| 350 | +} |
| 351 | +``` |
| 352 | + |
| 353 | +```ts |
| 354 | +function new21Game(n: number, k: number, maxPts: number): number { |
| 355 | + if (k === 0) { |
| 356 | + return 1; |
| 357 | + } |
| 358 | + const f = new Array(k + maxPts).fill(0); |
| 359 | + for (let i = k; i < Math.min(n + 1, k + maxPts); ++i) { |
| 360 | + f[i] = 1; |
82 | 361 | }
|
83 |
| - dp[k - 1] = (1.0 * Math.min(n - k + 1, maxPts)) / maxPts; |
84 |
| - for (let i = k - 2; i >= 0; i--) { |
85 |
| - dp[i] = dp[i + 1] - (dp[i + maxPts + 1] - dp[i + 1]) / maxPts; |
| 362 | + f[k - 1] = Math.min(n - k + 1, maxPts) / maxPts; |
| 363 | + for (let i = k - 2; i >= 0; --i) { |
| 364 | + f[i] = f[i + 1] + (f[i + 1] - f[i + maxPts + 1]) / maxPts; |
86 | 365 | }
|
87 |
| - return dp[0]; |
| 366 | + return f[0]; |
88 | 367 | }
|
89 | 368 | ```
|
90 | 369 |
|
|
0 commit comments