|
| 1 | +use std::collections::BinaryHeap; |
| 2 | +use std::collections::HashMap; |
| 3 | +use std::collections::HashSet; |
| 4 | + |
| 5 | +const INF: i32 = i32::MAX; |
| 6 | + |
| 7 | +#[derive(Debug, PartialEq, Eq, Hash, Clone, Copy)] |
| 8 | +struct Edge { |
| 9 | + target: usize, |
| 10 | + weight: i32, |
| 11 | +} |
| 12 | + |
| 13 | +#[derive(Debug, PartialEq, Eq, Hash, Clone)] |
| 14 | +struct Graph { |
| 15 | + nodes: usize, |
| 16 | + edges: Vec<Vec<Edge>>, |
| 17 | +} |
| 18 | + |
| 19 | +impl Graph { |
| 20 | + // Constructor to create a new graph with a given number of nodes. |
| 21 | + fn new(nodes: usize) -> Self { |
| 22 | + Graph { |
| 23 | + nodes, |
| 24 | + edges: vec![vec![]; nodes], |
| 25 | + } |
| 26 | + } |
| 27 | + |
| 28 | + // Add an edge to the graph from 'from' node to 'to' node with a given weight. |
| 29 | + fn add_edge(&mut self, from: usize, to: usize, weight: i32) { |
| 30 | + self.edges[from].push(Edge { target: to, weight }); |
| 31 | + } |
| 32 | + |
| 33 | + // Find the shortest path from a specified starting node using Dijkstra's algorithm. |
| 34 | + fn shortest_path(&self, start: usize) -> HashMap<usize, i32> { |
| 35 | + let mut distance: HashMap<usize, i32> = (0..self.nodes).map(|i| (i, INF)).collect(); |
| 36 | + let mut visited: HashSet<usize> = HashSet::new(); |
| 37 | + |
| 38 | + // Set the distance to the starting node to 0 and initialize a priority queue. |
| 39 | + distance.insert(start, 0); |
| 40 | + let mut min_heap: BinaryHeap<(i32, usize)> = BinaryHeap::new(); |
| 41 | + min_heap.push((0, start)); |
| 42 | + |
| 43 | + while let Some((_dist, node)) = min_heap.pop() { |
| 44 | + if visited.contains(&node) { |
| 45 | + continue; |
| 46 | + } |
| 47 | + |
| 48 | + visited.insert(node); |
| 49 | + |
| 50 | + // Explore neighboring nodes and update distances if a shorter path is found. |
| 51 | + for edge in &self.edges[node] { |
| 52 | + let new_dist = distance[&node] + edge.weight; |
| 53 | + if new_dist < distance[&edge.target] { |
| 54 | + distance.insert(edge.target, new_dist); |
| 55 | + min_heap.push((new_dist, edge.target)); |
| 56 | + } |
| 57 | + } |
| 58 | + } |
| 59 | + |
| 60 | + distance |
| 61 | + } |
| 62 | +} |
| 63 | + |
| 64 | +fn main() { |
| 65 | + // Create a new graph. |
| 66 | + let mut graph = Graph::new(5); |
| 67 | + |
| 68 | + // Add edges to the graph. |
| 69 | + graph.add_edge(0, 1, 1); |
| 70 | + graph.add_edge(0, 2, 4); |
| 71 | + graph.add_edge(1, 2, 2); |
| 72 | + graph.add_edge(1, 3, 5); |
| 73 | + graph.add_edge(2, 3, 1); |
| 74 | + graph.add_edge(3, 4, 3); |
| 75 | + |
| 76 | + let start_node = 0; |
| 77 | + |
| 78 | + // Find the shortest distances from the starting node. |
| 79 | + let shortest_distances = graph.shortest_path(start_node); |
| 80 | + |
| 81 | + // Print the results. |
| 82 | + for (node, distance) in shortest_distances.iter() { |
| 83 | + println!( |
| 84 | + "Shortest distance from node {} to node {}: {}", |
| 85 | + start_node, node, distance |
| 86 | + ); |
| 87 | + } |
| 88 | +} |
0 commit comments