@@ -628,15 +628,13 @@ Scatter plot of concavity versus perimeter with new observation represented as a
628
628
``` {code-cell} ipython3
629
629
new_obs_Perimeter = 0
630
630
new_obs_Concavity = 3.5
631
- (
632
- cancer
633
- [["Perimeter", "Concavity", "Class"]]
634
- .assign(dist_from_new = (
631
+ cancer["dist_from_new"] = (
635
632
(cancer["Perimeter"] - new_obs_Perimeter) ** 2
636
633
+ (cancer["Concavity"] - new_obs_Concavity) ** 2
637
- )**(1/2))
638
- .nsmallest(5, "dist_from_new")
639
- )
634
+ )**(1/2)
635
+ cancer.nsmallest(5, "dist_from_new")[
636
+ ["Perimeter", "Concavity", "Class", "dist_from_new"]
637
+ ]
640
638
```
641
639
642
640
``` {code-cell} ipython3
@@ -751,16 +749,14 @@ three predictors.
751
749
new_obs_Perimeter = 0
752
750
new_obs_Concavity = 3.5
753
751
new_obs_Symmetry = 1
754
- (
755
- cancer
756
- [["Perimeter", "Concavity", "Symmetry", "Class"]]
757
- .assign(dist_from_new = (
758
- (cancer["Perimeter"] - new_obs_Perimeter) ** 2
759
- + (cancer["Concavity"] - new_obs_Concavity) ** 2
760
- + (cancer["Symmetry"] - new_obs_Symmetry) ** 2
761
- )**(1/2))
762
- .nsmallest(5, "dist_from_new")
763
- )
752
+ cancer["dist_from_new"] = (
753
+ (cancer["Perimeter"] - new_obs_Perimeter) ** 2
754
+ + (cancer["Concavity"] - new_obs_Concavity) ** 2
755
+ + (cancer["Symmetry"] - new_obs_Symmetry) ** 2
756
+ )**(1/2)
757
+ cancer.nsmallest(5, "dist_from_new")[
758
+ ["Perimeter", "Concavity", "Symmetry", "Class", "dist_from_new"]
759
+ ]
764
760
```
765
761
766
762
Based on $K=5$ nearest neighbors with these three predictors we would classify
0 commit comments