Skip to content

Commit 277af4b

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 6c56316e73949f23f84db6ebe52230f87f977e4d
1 parent 3cba8cb commit 277af4b

File tree

1,080 files changed

+3244
-3244
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,080 files changed

+3244
-3244
lines changed
39 Bytes
Binary file not shown.
39 Bytes
Binary file not shown.

dev/_downloads/plot_mds.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"# Author: Nelle Varoquaux <[email protected]>\n# License: BSD\n\nprint(__doc__)\nimport numpy as np\n\nfrom matplotlib import pyplot as plt\nfrom matplotlib.collections import LineCollection\n\nfrom sklearn import manifold\nfrom sklearn.metrics import euclidean_distances\nfrom sklearn.decomposition import PCA\n\nn_samples = 20\nseed = np.random.RandomState(seed=3)\nX_true = seed.randint(0, 20, 2 * n_samples).astype(np.float)\nX_true = X_true.reshape((n_samples, 2))\n# Center the data\nX_true -= X_true.mean()\n\nsimilarities = euclidean_distances(X_true)\n\n# Add noise to the similarities\nnoise = np.random.rand(n_samples, n_samples)\nnoise = noise + noise.T\nnoise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0\nsimilarities += noise\n\nmds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed,\n dissimilarity=\"precomputed\", n_jobs=1)\npos = mds.fit(similarities).embedding_\n\nnmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12,\n dissimilarity=\"precomputed\", random_state=seed, n_jobs=1,\n n_init=1)\nnpos = nmds.fit_transform(similarities, init=pos)\n\n# Rescale the data\npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum())\nnpos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum())\n\n# Rotate the data\nclf = PCA(n_components=2)\nX_true = clf.fit_transform(X_true)\n\npos = clf.fit_transform(pos)\n\nnpos = clf.fit_transform(npos)\n\nfig = plt.figure(1)\nax = plt.axes([0., 0., 1., 1.])\n\ns = 100\nplt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0,\n label='True Position')\nplt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS')\nplt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS')\nplt.legend(scatterpoints=1, loc='best', shadow=False)\n\nsimilarities = similarities.max() / similarities * 100\nsimilarities[np.isinf(similarities)] = 0\n\n# Plot the edges\nstart_idx, end_idx = np.where(pos)\n# a sequence of (*line0*, *line1*, *line2*), where::\n# linen = (x0, y0), (x1, y1), ... (xm, ym)\nsegments = [[X_true[i, :], X_true[j, :]]\n for i in range(len(pos)) for j in range(len(pos))]\nvalues = np.abs(similarities)\nlc = LineCollection(segments,\n zorder=0, cmap=plt.cm.Blues,\n norm=plt.Normalize(0, values.max()))\nlc.set_array(similarities.flatten())\nlc.set_linewidths(np.full(len(segments), 0.5))\nax.add_collection(lc)\n\nplt.show()"
29+
"# Author: Nelle Varoquaux <[email protected]>\n# License: BSD\n\nprint(__doc__)\nimport numpy as np\n\nfrom matplotlib import pyplot as plt\nfrom matplotlib.collections import LineCollection\n\nfrom sklearn import manifold\nfrom sklearn.metrics import euclidean_distances\nfrom sklearn.decomposition import PCA\n\nEPSILON = np.finfo(np.float32).eps\nn_samples = 20\nseed = np.random.RandomState(seed=3)\nX_true = seed.randint(0, 20, 2 * n_samples).astype(np.float)\nX_true = X_true.reshape((n_samples, 2))\n# Center the data\nX_true -= X_true.mean()\n\nsimilarities = euclidean_distances(X_true)\n\n# Add noise to the similarities\nnoise = np.random.rand(n_samples, n_samples)\nnoise = noise + noise.T\nnoise[np.arange(noise.shape[0]), np.arange(noise.shape[0])] = 0\nsimilarities += noise\n\nmds = manifold.MDS(n_components=2, max_iter=3000, eps=1e-9, random_state=seed,\n dissimilarity=\"precomputed\", n_jobs=1)\npos = mds.fit(similarities).embedding_\n\nnmds = manifold.MDS(n_components=2, metric=False, max_iter=3000, eps=1e-12,\n dissimilarity=\"precomputed\", random_state=seed, n_jobs=1,\n n_init=1)\nnpos = nmds.fit_transform(similarities, init=pos)\n\n# Rescale the data\npos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((pos ** 2).sum())\nnpos *= np.sqrt((X_true ** 2).sum()) / np.sqrt((npos ** 2).sum())\n\n# Rotate the data\nclf = PCA(n_components=2)\nX_true = clf.fit_transform(X_true)\n\npos = clf.fit_transform(pos)\n\nnpos = clf.fit_transform(npos)\n\nfig = plt.figure(1)\nax = plt.axes([0., 0., 1., 1.])\n\ns = 100\nplt.scatter(X_true[:, 0], X_true[:, 1], color='navy', s=s, lw=0,\n label='True Position')\nplt.scatter(pos[:, 0], pos[:, 1], color='turquoise', s=s, lw=0, label='MDS')\nplt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS')\nplt.legend(scatterpoints=1, loc='best', shadow=False)\n\nsimilarities = similarities.max() / (similarities + EPSILON) * 100\nnp.fill_diagonal(similarities, 0)\n# Plot the edges\nstart_idx, end_idx = np.where(pos)\n# a sequence of (*line0*, *line1*, *line2*), where::\n# linen = (x0, y0), (x1, y1), ... (xm, ym)\nsegments = [[X_true[i, :], X_true[j, :]]\n for i in range(len(pos)) for j in range(len(pos))]\nvalues = np.abs(similarities)\nlc = LineCollection(segments,\n zorder=0, cmap=plt.cm.Blues,\n norm=plt.Normalize(0, values.max()))\nlc.set_array(similarities.flatten())\nlc.set_linewidths(np.full(len(segments), 0.5))\nax.add_collection(lc)\n\nplt.show()"
3030
]
3131
}
3232
],

dev/_downloads/plot_mds.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,6 +22,7 @@
2222
from sklearn.metrics import euclidean_distances
2323
from sklearn.decomposition import PCA
2424

25+
EPSILON = np.finfo(np.float32).eps
2526
n_samples = 20
2627
seed = np.random.RandomState(seed=3)
2728
X_true = seed.randint(0, 20, 2 * n_samples).astype(np.float)
@@ -68,9 +69,8 @@
6869
plt.scatter(npos[:, 0], npos[:, 1], color='darkorange', s=s, lw=0, label='NMDS')
6970
plt.legend(scatterpoints=1, loc='best', shadow=False)
7071

71-
similarities = similarities.max() / similarities * 100
72-
similarities[np.isinf(similarities)] = 0
73-
72+
similarities = similarities.max() / (similarities + EPSILON) * 100
73+
np.fill_diagonal(similarities, 0)
7474
# Plot the edges
7575
start_idx, end_idx = np.where(pos)
7676
# a sequence of (*line0*, *line1*, *line2*), where::

dev/_downloads/scikit-learn-docs.pdf

-20 KB
Binary file not shown.

dev/_images/iris.png

0 Bytes
7 Bytes
7 Bytes
-652 Bytes
-652 Bytes

0 commit comments

Comments
 (0)