Skip to content

Commit a63231f

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 5310b87288fb5954814054530bccbd57692e1e08
1 parent 0dd0600 commit a63231f

File tree

601 files changed

+1219
-1216
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

601 files changed

+1219
-1216
lines changed
121 Bytes
Binary file not shown.
120 Bytes
Binary file not shown.

dev/_downloads/plot_lle_digits.ipynb

Lines changed: 1 addition & 1 deletion
Large diffs are not rendered by default.

dev/_downloads/plot_lle_digits.py

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -28,14 +28,13 @@
2828
# Gael Varoquaux
2929
# License: BSD 3 clause (C) INRIA 2011
3030

31-
print(__doc__)
3231
from time import time
33-
3432
import numpy as np
3533
import matplotlib.pyplot as plt
3634
from matplotlib import offsetbox
3735
from sklearn import (manifold, datasets, decomposition, ensemble,
3836
discriminant_analysis, random_projection, neighbors)
37+
print(__doc__)
3938

4039
digits = datasets.load_digits(n_class=6)
4140
X = digits.data
@@ -99,7 +98,7 @@ def plot_embedding(X, title=None):
9998
plot_embedding(X_projected, "Random Projection of the digits")
10099

101100

102-
#----------------------------------------------------------------------
101+
# ----------------------------------------------------------------------
103102
# Projection on to the first 2 principal components
104103

105104
print("Computing PCA projection")
@@ -116,7 +115,8 @@ def plot_embedding(X, title=None):
116115
X2 = X.copy()
117116
X2.flat[::X.shape[1] + 1] += 0.01 # Make X invertible
118117
t0 = time()
119-
X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_transform(X2, y)
118+
X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2
119+
).fit_transform(X2, y)
120120
plot_embedding(X_lda,
121121
"Linear Discriminant projection of the digits (time %.2fs)" %
122122
(time() - t0))
@@ -235,7 +235,8 @@ def plot_embedding(X, title=None):
235235
# ----------------------------------------------------------------------
236236
# NCA projection of the digits dataset
237237
print("Computing NCA projection")
238-
nca = neighbors.NeighborhoodComponentsAnalysis(n_components=2, random_state=0)
238+
nca = neighbors.NeighborhoodComponentsAnalysis(init='random',
239+
n_components=2, random_state=0)
239240
t0 = time()
240241
X_nca = nca.fit_transform(X, y)
241242

dev/_downloads/scikit-learn-docs.pdf

18.6 KB
Binary file not shown.

dev/_images/iris.png

0 Bytes
586 Bytes
586 Bytes
986 Bytes
986 Bytes

0 commit comments

Comments
 (0)