|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": { |
| 7 | + "collapsed": false |
| 8 | + }, |
| 9 | + "outputs": [ |
| 10 | + { |
| 11 | + "name": "stderr", |
| 12 | + "output_type": "stream", |
| 13 | + "text": [ |
| 14 | + "Using TensorFlow backend.\n" |
| 15 | + ] |
| 16 | + } |
| 17 | + ], |
| 18 | + "source": [ |
| 19 | + "import numpy as np\n", |
| 20 | + "from matplotlib import pyplot as plt\n", |
| 21 | + "%matplotlib inline\n", |
| 22 | + "\n", |
| 23 | + "import keras\n", |
| 24 | + "from keras.datasets import mnist, cifar10\n", |
| 25 | + "from keras.layers import Dense, Convolution2D, Flatten, Activation, MaxPool2D, Dropout, Flatten\n", |
| 26 | + "from keras.models import Sequential\n", |
| 27 | + "from keras.utils import np_utils" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": 2, |
| 33 | + "metadata": { |
| 34 | + "collapsed": true |
| 35 | + }, |
| 36 | + "outputs": [], |
| 37 | + "source": [ |
| 38 | + "# Import MNIST Datasets\n", |
| 39 | + "(x_train, y_train), (x_test, y_test) = mnist.load_data()\n", |
| 40 | + "n_examples = 40000" |
| 41 | + ] |
| 42 | + }, |
| 43 | + { |
| 44 | + "cell_type": "code", |
| 45 | + "execution_count": 3, |
| 46 | + "metadata": { |
| 47 | + "collapsed": false |
| 48 | + }, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "X1_train = []\n", |
| 52 | + "X1_test = []\n", |
| 53 | + "\n", |
| 54 | + "X2_train = []\n", |
| 55 | + "X2_test = []\n", |
| 56 | + "\n", |
| 57 | + "Y1_train = []\n", |
| 58 | + "Y1_test = []\n", |
| 59 | + "\n", |
| 60 | + "Y2_train = []\n", |
| 61 | + "Y2_test = []\n", |
| 62 | + "\n", |
| 63 | + "for ix in range(n_examples):\n", |
| 64 | + " if y_train[ix] < 5:\n", |
| 65 | + " # Put data in set 01\n", |
| 66 | + " X1_train.append(x_train[ix]/255.0)\n", |
| 67 | + " Y1_train.append(y_train[ix])\n", |
| 68 | + " else:\n", |
| 69 | + " # Put data in set 02\n", |
| 70 | + " X2_train.append(x_train[ix]/255.0)\n", |
| 71 | + " Y2_train.append(y_train[ix])\n", |
| 72 | + "\n", |
| 73 | + "for ix in range(y_test.shape[0]):\n", |
| 74 | + " if y_test[ix] < 5:\n", |
| 75 | + " # Put data in set 01\n", |
| 76 | + " X1_test.append(x_test[ix]/255.0)\n", |
| 77 | + " Y1_test.append(y_test[ix])\n", |
| 78 | + " else:\n", |
| 79 | + " # Put data in set 02\n", |
| 80 | + " X2_test.append(x_test[ix]/255.0)\n", |
| 81 | + " Y2_test.append(y_test[ix])" |
| 82 | + ] |
| 83 | + }, |
| 84 | + { |
| 85 | + "cell_type": "code", |
| 86 | + "execution_count": 4, |
| 87 | + "metadata": { |
| 88 | + "collapsed": false |
| 89 | + }, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "X1_train = np.asarray(X1_train).reshape((-1, 28, 28, 1))\n", |
| 93 | + "X1_test = np.asarray(X1_test).reshape((-1, 28, 28, 1))\n", |
| 94 | + "\n", |
| 95 | + "X2_train = np.asarray(X2_train).reshape((-1, 28, 28, 1))\n", |
| 96 | + "X2_test = np.asarray(X2_test).reshape((-1, 28, 28, 1))\n", |
| 97 | + "\n", |
| 98 | + "Y1_train = np_utils.to_categorical(np.asarray(Y1_train), num_classes=5)\n", |
| 99 | + "Y1_test = np_utils.to_categorical(np.asarray(Y1_test), num_classes=5)\n", |
| 100 | + "\n", |
| 101 | + "Y2_train = np_utils.to_categorical(np.asarray(Y2_train), num_classes=10)\n", |
| 102 | + "Y2_test = np_utils.to_categorical(np.asarray(Y2_test), num_classes=10)" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "code", |
| 107 | + "execution_count": 5, |
| 108 | + "metadata": { |
| 109 | + "collapsed": true |
| 110 | + }, |
| 111 | + "outputs": [], |
| 112 | + "source": [ |
| 113 | + "split1 = int(0.8 * X1_train.shape[0])\n", |
| 114 | + "split2 = int(0.8 * X2_train.shape[0])\n", |
| 115 | + "\n", |
| 116 | + "x1_val = X1_train[split1:]\n", |
| 117 | + "x1_train = X1_train[:split1]\n", |
| 118 | + "y1_val = Y1_train[split1:]\n", |
| 119 | + "y1_train = Y1_train[:split1]\n", |
| 120 | + "\n", |
| 121 | + "x2_val = X2_train[split2:]\n", |
| 122 | + "x2_train = X2_train[:split2]\n", |
| 123 | + "y2_val = Y2_train[split2:]\n", |
| 124 | + "y2_train = Y2_train[:split2]\n" |
| 125 | + ] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "code", |
| 129 | + "execution_count": 6, |
| 130 | + "metadata": { |
| 131 | + "collapsed": false |
| 132 | + }, |
| 133 | + "outputs": [ |
| 134 | + { |
| 135 | + "name": "stdout", |
| 136 | + "output_type": "stream", |
| 137 | + "text": [ |
| 138 | + "(16336, 28, 28, 1) (5139, 28, 28, 1)\n", |
| 139 | + "(20420, 5) (5139, 5)\n", |
| 140 | + "(19580, 28, 28, 1) (4861, 28, 28, 1)\n", |
| 141 | + "(19580, 10) (4861, 10)\n" |
| 142 | + ] |
| 143 | + } |
| 144 | + ], |
| 145 | + "source": [ |
| 146 | + "print x1_train.shape, X1_test.shape\n", |
| 147 | + "print Y1_train.shape, Y1_test.shape\n", |
| 148 | + "\n", |
| 149 | + "print X2_train.shape, X2_test.shape\n", |
| 150 | + "print Y2_train.shape, Y2_test.shape" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": 7, |
| 156 | + "metadata": { |
| 157 | + "collapsed": false |
| 158 | + }, |
| 159 | + "outputs": [ |
| 160 | + { |
| 161 | + "name": "stdout", |
| 162 | + "output_type": "stream", |
| 163 | + "text": [ |
| 164 | + "_________________________________________________________________\n", |
| 165 | + "Layer (type) Output Shape Param # \n", |
| 166 | + "=================================================================\n", |
| 167 | + "conv2d_1 (Conv2D) (None, 24, 24, 32) 832 \n", |
| 168 | + "_________________________________________________________________\n", |
| 169 | + "conv2d_2 (Conv2D) (None, 20, 20, 16) 12816 \n", |
| 170 | + "_________________________________________________________________\n", |
| 171 | + "max_pooling2d_1 (MaxPooling2 (None, 10, 10, 16) 0 \n", |
| 172 | + "_________________________________________________________________\n", |
| 173 | + "conv2d_3 (Conv2D) (None, 8, 8, 8) 1160 \n", |
| 174 | + "_________________________________________________________________\n", |
| 175 | + "flatten_1 (Flatten) (None, 512) 0 \n", |
| 176 | + "_________________________________________________________________\n", |
| 177 | + "dropout_1 (Dropout) (None, 512) 0 \n", |
| 178 | + "_________________________________________________________________\n", |
| 179 | + "dense_1 (Dense) (None, 128) 65664 \n", |
| 180 | + "_________________________________________________________________\n", |
| 181 | + "activation_1 (Activation) (None, 128) 0 \n", |
| 182 | + "_________________________________________________________________\n", |
| 183 | + "dense_2 (Dense) (None, 5) 645 \n", |
| 184 | + "_________________________________________________________________\n", |
| 185 | + "activation_2 (Activation) (None, 5) 0 \n", |
| 186 | + "=================================================================\n", |
| 187 | + "Total params: 81,117.0\n", |
| 188 | + "Trainable params: 81,117.0\n", |
| 189 | + "Non-trainable params: 0.0\n", |
| 190 | + "_________________________________________________________________\n" |
| 191 | + ] |
| 192 | + } |
| 193 | + ], |
| 194 | + "source": [ |
| 195 | + "model = Sequential()\n", |
| 196 | + "\n", |
| 197 | + "model.add(Convolution2D(32, 5, input_shape=(28, 28, 1), activation='relu'))\n", |
| 198 | + "model.add(Convolution2D(16, 5, activation='relu'))\n", |
| 199 | + "model.add(MaxPool2D(pool_size=(2, 2)))\n", |
| 200 | + "model.add(Convolution2D(8, 3, activation='relu'))\n", |
| 201 | + "model.add(Flatten())\n", |
| 202 | + "model.add(Dropout(0.42))\n", |
| 203 | + "\n", |
| 204 | + "model.add(Dense(128))\n", |
| 205 | + "model.add(Activation('relu'))\n", |
| 206 | + "\n", |
| 207 | + "model.add(Dense(5))\n", |
| 208 | + "model.add(Activation('softmax'))\n", |
| 209 | + "\n", |
| 210 | + "model.summary()\n", |
| 211 | + "model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])" |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "code", |
| 216 | + "execution_count": 13, |
| 217 | + "metadata": { |
| 218 | + "collapsed": false |
| 219 | + }, |
| 220 | + "outputs": [ |
| 221 | + { |
| 222 | + "name": "stdout", |
| 223 | + "output_type": "stream", |
| 224 | + "text": [ |
| 225 | + "0:00:05.005437\n" |
| 226 | + ] |
| 227 | + } |
| 228 | + ], |
| 229 | + "source": [ |
| 230 | + "# Add Time module to track training time\n", |
| 231 | + "import time\n", |
| 232 | + "import datetime\n", |
| 233 | + "\n", |
| 234 | + "a = datetime.datetime.now()\n", |
| 235 | + "time.sleep(5)\n", |
| 236 | + "print datetime.datetime.now() - a" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "code", |
| 241 | + "execution_count": 9, |
| 242 | + "metadata": { |
| 243 | + "collapsed": false |
| 244 | + }, |
| 245 | + "outputs": [ |
| 246 | + { |
| 247 | + "name": "stderr", |
| 248 | + "output_type": "stream", |
| 249 | + "text": [ |
| 250 | + "/usr/local/lib/python2.7/dist-packages/keras/models.py:826: UserWarning: The `nb_epoch` argument in `fit` has been renamed `epochs`.\n", |
| 251 | + " warnings.warn('The `nb_epoch` argument in `fit` '\n" |
| 252 | + ] |
| 253 | + }, |
| 254 | + { |
| 255 | + "name": "stdout", |
| 256 | + "output_type": "stream", |
| 257 | + "text": [ |
| 258 | + "Train on 16336 samples, validate on 4084 samples\n", |
| 259 | + "Epoch 1/10\n", |
| 260 | + "3s - loss: 0.2427 - acc: 0.9158 - val_loss: 0.0447 - val_acc: 0.9858\n", |
| 261 | + "Epoch 2/10\n", |
| 262 | + "2s - loss: 0.0595 - acc: 0.9809 - val_loss: 0.0329 - val_acc: 0.9890\n", |
| 263 | + "Epoch 3/10\n", |
| 264 | + "2s - loss: 0.0405 - acc: 0.9873 - val_loss: 0.0232 - val_acc: 0.9917\n", |
| 265 | + "Epoch 4/10\n", |
| 266 | + "2s - loss: 0.0321 - acc: 0.9890 - val_loss: 0.0176 - val_acc: 0.9946\n", |
| 267 | + "Epoch 5/10\n", |
| 268 | + "2s - loss: 0.0262 - acc: 0.9920 - val_loss: 0.0131 - val_acc: 0.9956\n", |
| 269 | + "Epoch 6/10\n", |
| 270 | + "2s - loss: 0.0202 - acc: 0.9935 - val_loss: 0.0245 - val_acc: 0.9922\n", |
| 271 | + "Epoch 7/10\n", |
| 272 | + "2s - loss: 0.0179 - acc: 0.9941 - val_loss: 0.0157 - val_acc: 0.9944\n", |
| 273 | + "Epoch 8/10\n", |
| 274 | + "2s - loss: 0.0173 - acc: 0.9944 - val_loss: 0.0168 - val_acc: 0.9949\n", |
| 275 | + "Epoch 9/10\n", |
| 276 | + "2s - loss: 0.0131 - acc: 0.9949 - val_loss: 0.0102 - val_acc: 0.9976\n", |
| 277 | + "Epoch 10/10\n", |
| 278 | + "2s - loss: 0.0143 - acc: 0.9961 - val_loss: 0.0130 - val_acc: 0.9966\n" |
| 279 | + ] |
| 280 | + } |
| 281 | + ], |
| 282 | + "source": [ |
| 283 | + "start = datetime.datetime.now()\n", |
| 284 | + "hist1 = model.fit(x1_train, y1_train,\n", |
| 285 | + " nb_epoch=10,\n", |
| 286 | + " shuffle=True,\n", |
| 287 | + " batch_size=100,\n", |
| 288 | + " validation_data=(x1_val, y1_val), verbose=2)\n", |
| 289 | + "\n", |
| 290 | + "time_taken = datetime.datetime.now() - start" |
| 291 | + ] |
| 292 | + }, |
| 293 | + { |
| 294 | + "cell_type": "code", |
| 295 | + "execution_count": null, |
| 296 | + "metadata": { |
| 297 | + "collapsed": false |
| 298 | + }, |
| 299 | + "outputs": [], |
| 300 | + "source": [] |
| 301 | + } |
| 302 | + ], |
| 303 | + "metadata": { |
| 304 | + "kernelspec": { |
| 305 | + "display_name": "Python 2", |
| 306 | + "language": "python", |
| 307 | + "name": "python2" |
| 308 | + }, |
| 309 | + "language_info": { |
| 310 | + "codemirror_mode": { |
| 311 | + "name": "ipython", |
| 312 | + "version": 2 |
| 313 | + }, |
| 314 | + "file_extension": ".py", |
| 315 | + "mimetype": "text/x-python", |
| 316 | + "name": "python", |
| 317 | + "nbconvert_exporter": "python", |
| 318 | + "pygments_lexer": "ipython2", |
| 319 | + "version": "2.7.12" |
| 320 | + } |
| 321 | + }, |
| 322 | + "nbformat": 4, |
| 323 | + "nbformat_minor": 2 |
| 324 | +} |
0 commit comments