|
50 | 50 |
|
51 | 51 | <!-- 这里可写通用的实现逻辑 -->
|
52 | 52 |
|
| 53 | +**方法一:状态压缩动态规划** |
| 54 | + |
| 55 | +我们注意到 $n \leq 14$,因此,我们可以考虑使用状态压缩动态规划的方法求解本题。 |
| 56 | + |
| 57 | +我们用一个长度为 $n$ 的二进制数表示当前的状态,第 $i$ 位为 $1$ 表示 $nums2[i]$ 已经被选择,为 $0$ 表示 $nums2[i]$ 还未被选择。 |
| 58 | + |
| 59 | +我们定义 $f[i][j]$ 表示 $nums1$ 的前 $i$ 个数中,选择了 $nums2$ 的 $i$ 个数,且当前所选数字的状态为 $j$ 时,数组 $nums1$ 和 $nums2$ 的异或值之和的最小值。初始时 $f[0][0]=0$,其余 $f[i][j]=+\infty$。 |
| 60 | + |
| 61 | +我们可以枚举 $nums1$ 的第 $i$ 个数 $x$,然后在 $[0,2^n)$ 的范围内枚举状态 $j$,转移方程为 $f[i][j]=\min(f[i][j],f[i-1][j\oplus 2^k]+(x\oplus nums2[k]))$,其中 $k$ 是 $j$ 的二进制表示中的某个 $1$ 所在的位置。 |
| 62 | + |
| 63 | +最后答案为 $f[n][2^n-1]$。 |
| 64 | + |
| 65 | +时间复杂度 $O(n^2 \times 2^n)$,空间复杂度 $O(n \times 2^n)$。其中 $n$ 是数组的长度。 |
| 66 | + |
| 67 | +我们注意到,状态 $f[i][j]$ 只与 $f[i-1][j\oplus 2^k]$ 有关,因此我们去掉第一维,将空间复杂度优化到 $O(2^n)$。 |
| 68 | + |
| 69 | +**方法二:状态压缩动态规划(枚举优化)** |
| 70 | + |
| 71 | +我们也可以直接在 $[0, 2^n)$ 范围内枚举状态 $i$,假设 $i$ 的二进制表示中有 $k$ 个 $1$,那么当前枚举的就是 $nums1$ 的第 $k$ 个数,下标为 $k-1$。状态转移方程为 $f[i]=\min(f[i],f[i\oplus 2^j]+(nums1[k-1]\oplus nums2[j]))$,其中 $j$ 是 $i$ 的二进制表示中的某个 $1$ 所在的位置。 |
| 72 | + |
| 73 | +时间复杂度 $O(n \times 2^n)$,空间复杂度 $O(2^n)$。其中 $n$ 是数组的长度。 |
| 74 | + |
53 | 75 | <!-- tabs:start -->
|
54 | 76 |
|
55 | 77 | ### **Python3**
|
56 | 78 |
|
57 | 79 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
58 | 80 |
|
59 | 81 | ```python
|
| 82 | +class Solution: |
| 83 | + def minimumXORSum(self, nums1: List[int], nums2: List[int]) -> int: |
| 84 | + n = len(nums2) |
| 85 | + f = [[inf] * (1 << n) for _ in range(n + 1)] |
| 86 | + f[0][0] = 0 |
| 87 | + for i, x in enumerate(nums1, 1): |
| 88 | + for j in range(1 << n): |
| 89 | + for k in range(n): |
| 90 | + if j >> k & 1: |
| 91 | + f[i][j] = min(f[i][j], f[i - 1][j ^ (1 << k)] + (x ^ nums2[k])) |
| 92 | + return f[-1][-1] |
| 93 | +``` |
60 | 94 |
|
| 95 | +```python |
| 96 | +class Solution: |
| 97 | + def minimumXORSum(self, nums1: List[int], nums2: List[int]) -> int: |
| 98 | + n = len(nums2) |
| 99 | + f = [inf] * (1 << n) |
| 100 | + f[0] = 0 |
| 101 | + for x in nums1: |
| 102 | + for j in range((1 << n) - 1, -1, -1): |
| 103 | + for k in range(n): |
| 104 | + if j >> k & 1: |
| 105 | + f[j] = min(f[j], f[j ^ (1 << k)] + (x ^ nums2[k])) |
| 106 | + return f[-1] |
| 107 | +``` |
| 108 | + |
| 109 | +```python |
| 110 | +class Solution: |
| 111 | + def minimumXORSum(self, nums1: List[int], nums2: List[int]) -> int: |
| 112 | + n = len(nums2) |
| 113 | + f = [inf] * (1 << n) |
| 114 | + f[0] = 0 |
| 115 | + for i in range(1, 1 << n): |
| 116 | + k = i.bit_count() - 1 |
| 117 | + for j in range(n): |
| 118 | + if i >> j & 1: |
| 119 | + f[i] = min(f[i], f[i ^ (1 << j)] + (nums1[k] ^ nums2[j])) |
| 120 | + return f[-1] |
61 | 121 | ```
|
62 | 122 |
|
63 | 123 | ### **Java**
|
64 | 124 |
|
65 | 125 | <!-- 这里可写当前语言的特殊实现逻辑 -->
|
66 | 126 |
|
67 | 127 | ```java
|
| 128 | +class Solution { |
| 129 | + public int minimumXORSum(int[] nums1, int[] nums2) { |
| 130 | + int n = nums1.length; |
| 131 | + int[][] f = new int[n + 1][1 << n]; |
| 132 | + for (var g : f) { |
| 133 | + Arrays.fill(g, 1 << 30); |
| 134 | + } |
| 135 | + f[0][0] = 0; |
| 136 | + for (int i = 1; i <= n; ++i) { |
| 137 | + for (int j = 0; j < 1 << n; ++j) { |
| 138 | + for (int k = 0; k < n; ++k) { |
| 139 | + if ((j >> k & 1) == 1) { |
| 140 | + f[i][j] = Math.min(f[i][j], f[i - 1][j ^ (1 << k)] + (nums1[i - 1] ^ nums2[k])); |
| 141 | + } |
| 142 | + } |
| 143 | + } |
| 144 | + } |
| 145 | + return f[n][(1 << n) - 1]; |
| 146 | + } |
| 147 | +} |
| 148 | +``` |
| 149 | + |
| 150 | +```java |
| 151 | +class Solution { |
| 152 | + public int minimumXORSum(int[] nums1, int[] nums2) { |
| 153 | + int n = nums1.length; |
| 154 | + int[] f = new int[1 << n]; |
| 155 | + Arrays.fill(f, 1 << 30); |
| 156 | + f[0] = 0; |
| 157 | + for (int x : nums1) { |
| 158 | + for (int j = (1 << n) - 1; j >= 0; --j) { |
| 159 | + for (int k = 0; k < n; ++k) { |
| 160 | + if ((j >> k & 1) == 1) { |
| 161 | + f[j] = Math.min(f[j], f[j ^ (1 << k)] + (x ^ nums2[k])); |
| 162 | + } |
| 163 | + } |
| 164 | + } |
| 165 | + } |
| 166 | + return f[(1 << n) - 1]; |
| 167 | + } |
| 168 | +} |
| 169 | +``` |
| 170 | + |
| 171 | +```java |
| 172 | +class Solution { |
| 173 | + public int minimumXORSum(int[] nums1, int[] nums2) { |
| 174 | + int n = nums1.length; |
| 175 | + int[] f = new int[1 << n]; |
| 176 | + Arrays.fill(f, 1 << 30); |
| 177 | + f[0] = 0; |
| 178 | + for (int i = 0; i < 1 << n; ++i) { |
| 179 | + int k = Integer.bitCount(i) - 1; |
| 180 | + for (int j = 0; j < n; ++j) { |
| 181 | + if ((i >> j & 1) == 1) { |
| 182 | + f[i] = Math.min(f[i], f[i ^ (1 << j)] + (nums1[k] ^ nums2[j])); |
| 183 | + } |
| 184 | + } |
| 185 | + } |
| 186 | + return f[(1 << n) - 1]; |
| 187 | + } |
| 188 | +} |
| 189 | +``` |
| 190 | + |
| 191 | +### **C++** |
| 192 | + |
| 193 | +```cpp |
| 194 | +class Solution { |
| 195 | +public: |
| 196 | + int minimumXORSum(vector<int>& nums1, vector<int>& nums2) { |
| 197 | + int n = nums1.size(); |
| 198 | + int f[n + 1][1 << n]; |
| 199 | + memset(f, 0x3f, sizeof(f)); |
| 200 | + f[0][0] = 0; |
| 201 | + for (int i = 1; i <= n; ++i) { |
| 202 | + for (int j = 0; j < 1 << n; ++j) { |
| 203 | + for (int k = 0; k < n; ++k) { |
| 204 | + if (j >> k & 1) { |
| 205 | + f[i][j] = min(f[i][j], f[i - 1][j ^ (1 << k)] + (nums1[i - 1] ^ nums2[k])); |
| 206 | + } |
| 207 | + } |
| 208 | + } |
| 209 | + } |
| 210 | + return f[n][(1 << n) - 1]; |
| 211 | + } |
| 212 | +}; |
| 213 | +``` |
| 214 | +
|
| 215 | +```cpp |
| 216 | +class Solution { |
| 217 | +public: |
| 218 | + int minimumXORSum(vector<int>& nums1, vector<int>& nums2) { |
| 219 | + int n = nums1.size(); |
| 220 | + int f[1 << n]; |
| 221 | + memset(f, 0x3f, sizeof(f)); |
| 222 | + f[0] = 0; |
| 223 | + for (int x : nums1) { |
| 224 | + for (int j = (1 << n) - 1; ~j; --j) { |
| 225 | + for (int k = 0; k < n; ++k) { |
| 226 | + if (j >> k & 1) { |
| 227 | + f[j] = min(f[j], f[j ^ (1 << k)] + (x ^ nums2[k])); |
| 228 | + } |
| 229 | + } |
| 230 | + } |
| 231 | + } |
| 232 | + return f[(1 << n) - 1]; |
| 233 | + } |
| 234 | +}; |
| 235 | +``` |
| 236 | + |
| 237 | +```cpp |
| 238 | +class Solution { |
| 239 | +public: |
| 240 | + int minimumXORSum(vector<int>& nums1, vector<int>& nums2) { |
| 241 | + int n = nums1.size(); |
| 242 | + int f[1 << n]; |
| 243 | + memset(f, 0x3f, sizeof(f)); |
| 244 | + f[0] = 0; |
| 245 | + for (int i = 0; i < 1 << n; ++i) { |
| 246 | + int k = __builtin_popcount(i) - 1; |
| 247 | + for (int j = 0; j < n; ++j) { |
| 248 | + if (i >> j & 1) { |
| 249 | + f[i] = min(f[i], f[i ^ (1 << j)] + (nums1[k] ^ nums2[j])); |
| 250 | + } |
| 251 | + } |
| 252 | + } |
| 253 | + return f[(1 << n) - 1]; |
| 254 | + } |
| 255 | +}; |
| 256 | +``` |
| 257 | +
|
| 258 | +### **Go** |
| 259 | +
|
| 260 | +```go |
| 261 | +func minimumXORSum(nums1 []int, nums2 []int) int { |
| 262 | + n := len(nums1) |
| 263 | + f := make([][]int, n+1) |
| 264 | + for i := range f { |
| 265 | + f[i] = make([]int, 1<<n) |
| 266 | + for j := range f[i] { |
| 267 | + f[i][j] = 1 << 30 |
| 268 | + } |
| 269 | + } |
| 270 | + f[0][0] = 0 |
| 271 | + for i := 1; i <= n; i++ { |
| 272 | + for j := 0; j < 1<<n; j++ { |
| 273 | + for k := 0; k < n; k++ { |
| 274 | + if j>>k&1 == 1 { |
| 275 | + f[i][j] = min(f[i][j], f[i-1][j^(1<<k)]+(nums1[i-1]^nums2[k])) |
| 276 | + } |
| 277 | + } |
| 278 | + } |
| 279 | + } |
| 280 | + return f[n][(1<<n)-1] |
| 281 | +} |
| 282 | +
|
| 283 | +func min(a, b int) int { |
| 284 | + if a < b { |
| 285 | + return a |
| 286 | + } |
| 287 | + return b |
| 288 | +} |
| 289 | +``` |
| 290 | + |
| 291 | +```go |
| 292 | +func minimumXORSum(nums1 []int, nums2 []int) int { |
| 293 | + n := len(nums1) |
| 294 | + f := make([]int, 1<<n) |
| 295 | + for i := range f { |
| 296 | + f[i] = 1 << 30 |
| 297 | + } |
| 298 | + f[0] = 0 |
| 299 | + for _, x := range nums1 { |
| 300 | + for j := (1 << n) - 1; j >= 0; j-- { |
| 301 | + for k := 0; k < n; k++ { |
| 302 | + if j>>k&1 == 1 { |
| 303 | + f[j] = min(f[j], f[j^(1<<k)]+(x^nums2[k])) |
| 304 | + } |
| 305 | + } |
| 306 | + } |
| 307 | + } |
| 308 | + return f[(1<<n)-1] |
| 309 | +} |
| 310 | + |
| 311 | +func min(a, b int) int { |
| 312 | + if a < b { |
| 313 | + return a |
| 314 | + } |
| 315 | + return b |
| 316 | +} |
| 317 | +``` |
| 318 | + |
| 319 | +```go |
| 320 | +func minimumXORSum(nums1 []int, nums2 []int) int { |
| 321 | + n := len(nums1) |
| 322 | + f := make([]int, 1<<n) |
| 323 | + for i := range f { |
| 324 | + f[i] = 1 << 30 |
| 325 | + } |
| 326 | + f[0] = 0 |
| 327 | + for i := 0; i < 1<<n; i++ { |
| 328 | + k := bits.OnesCount(uint(i)) - 1 |
| 329 | + for j := 0; j < n; j++ { |
| 330 | + if i>>j&1 == 1 { |
| 331 | + f[i] = min(f[i], f[i^1<<j]+(nums1[k]^nums2[j])) |
| 332 | + } |
| 333 | + } |
| 334 | + } |
| 335 | + return f[(1<<n)-1] |
| 336 | +} |
| 337 | + |
| 338 | +func min(a, b int) int { |
| 339 | + if a < b { |
| 340 | + return a |
| 341 | + } |
| 342 | + return b |
| 343 | +} |
| 344 | +``` |
| 345 | + |
| 346 | +### **TypeScript** |
| 347 | + |
| 348 | +```ts |
| 349 | +function minimumXORSum(nums1: number[], nums2: number[]): number { |
| 350 | + const n = nums1.length; |
| 351 | + const f: number[][] = Array(n + 1) |
| 352 | + .fill(0) |
| 353 | + .map(() => Array(1 << n).fill(1 << 30)); |
| 354 | + f[0][0] = 0; |
| 355 | + for (let i = 1; i <= n; ++i) { |
| 356 | + for (let j = 0; j < 1 << n; ++j) { |
| 357 | + for (let k = 0; k < n; ++k) { |
| 358 | + if (((j >> k) & 1) === 1) { |
| 359 | + f[i][j] = Math.min( |
| 360 | + f[i][j], |
| 361 | + f[i - 1][j ^ (1 << k)] + (nums1[i - 1] ^ nums2[k]), |
| 362 | + ); |
| 363 | + } |
| 364 | + } |
| 365 | + } |
| 366 | + } |
| 367 | + return f[n][(1 << n) - 1]; |
| 368 | +} |
| 369 | +``` |
| 370 | + |
| 371 | +```ts |
| 372 | +function minimumXORSum(nums1: number[], nums2: number[]): number { |
| 373 | + const n = nums1.length; |
| 374 | + const f: number[] = Array(1 << n).fill(1 << 30); |
| 375 | + f[0] = 0; |
| 376 | + for (const x of nums1) { |
| 377 | + for (let j = (1 << n) - 1; ~j; --j) { |
| 378 | + for (let k = 0; k < n; ++k) { |
| 379 | + if (((j >> k) & 1) === 1) { |
| 380 | + f[j] = Math.min(f[j], f[j ^ (1 << k)] + (x ^ nums2[k])); |
| 381 | + } |
| 382 | + } |
| 383 | + } |
| 384 | + } |
| 385 | + return f[(1 << n) - 1]; |
| 386 | +} |
| 387 | +``` |
| 388 | + |
| 389 | +```ts |
| 390 | +function minimumXORSum(nums1: number[], nums2: number[]): number { |
| 391 | + const n = nums1.length; |
| 392 | + const f: number[] = Array(1 << n).fill(1 << 30); |
| 393 | + f[0] = 0; |
| 394 | + for (let i = 0; i < 1 << n; ++i) { |
| 395 | + const k = bitCount(i) - 1; |
| 396 | + for (let j = 0; j < n; ++j) { |
| 397 | + if (((i >> j) & 1) === 1) { |
| 398 | + f[i] = Math.min(f[i], f[i ^ (1 << j)] + (nums1[k] ^ nums2[j])); |
| 399 | + } |
| 400 | + } |
| 401 | + } |
| 402 | + return f[(1 << n) - 1]; |
| 403 | +} |
68 | 404 |
|
| 405 | +function bitCount(i: number): number { |
| 406 | + i = i - ((i >>> 1) & 0x55555555); |
| 407 | + i = (i & 0x33333333) + ((i >>> 2) & 0x33333333); |
| 408 | + i = (i + (i >>> 4)) & 0x0f0f0f0f; |
| 409 | + i = i + (i >>> 8); |
| 410 | + i = i + (i >>> 16); |
| 411 | + return i & 0x3f; |
| 412 | +} |
69 | 413 | ```
|
70 | 414 |
|
71 | 415 | ### **...**
|
|
0 commit comments