|
179 | 179 | "x = data_augmentation(inputs)\n",
|
180 | 180 | "\n",
|
181 | 181 | "x = layers.experimental.preprocessing.Rescaling(1./255)(x)\n",
|
182 |
| - "x = layers.Conv2D(filters=32, kernel_size=5)(x)\n", |
| 182 | + "x = layers.Conv2D(filters=32, kernel_size=5, use_bias=False)(x)\n", |
183 | 183 | "\n",
|
184 | 184 | "for size in [32, 64, 128, 256, 512]:\n",
|
185 | 185 | " residual = x\n",
|
186 | 186 | "\n",
|
187 | 187 | " x = layers.BatchNormalization()(x)\n",
|
188 |
| - " x = layers.SeparableConv2D(size, 3, padding=\"same\")(x)\n", |
189 | 188 | " x = layers.Activation(\"relu\")(x)\n",
|
| 189 | + " x = layers.SeparableConv2D(size, 3, padding=\"same\", use_bias=False)(x)\n", |
190 | 190 | "\n",
|
191 | 191 | " x = layers.BatchNormalization()(x)\n",
|
192 |
| - " x = layers.SeparableConv2D(size, 3, padding=\"same\")(x)\n", |
193 | 192 | " x = layers.Activation(\"relu\")(x)\n",
|
| 193 | + " x = layers.SeparableConv2D(size, 3, padding=\"same\", use_bias=False)(x)\n", |
194 | 194 | "\n",
|
195 | 195 | " x = layers.MaxPooling2D(3, strides=2, padding=\"same\")(x)\n",
|
196 | 196 | "\n",
|
197 | 197 | " residual = layers.Conv2D(\n",
|
198 |
| - " size, 1, strides=2, padding=\"same\")(residual)\n", |
| 198 | + " size, 1, strides=2, padding=\"same\", use_bias=False)(residual)\n", |
199 | 199 | " x = layers.add([x, residual])\n",
|
200 | 200 | "\n",
|
201 | 201 | "x = layers.GlobalAveragePooling2D()(x)\n",
|
|
0 commit comments