|
| 1 | +//===-- Implementation header for atanhf16 ----------------------*- C++ -*-===// |
| 2 | +// |
| 3 | +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | +// See https://llvm.org/LICENSE.txt for license information. |
| 5 | +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | +// |
| 7 | +//===----------------------------------------------------------------------===// |
| 8 | + |
| 9 | +#ifndef LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF16_H |
| 10 | +#define LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF16_H |
| 11 | + |
| 12 | +#include "include/llvm-libc-macros/float16-macros.h" |
| 13 | + |
| 14 | +#ifdef LIBC_TYPES_HAS_FLOAT16 |
| 15 | + |
| 16 | +#include "src/__support/FPUtil/FEnvImpl.h" |
| 17 | +#include "src/__support/FPUtil/FPBits.h" |
| 18 | +#include "src/__support/FPUtil/PolyEval.h" |
| 19 | +#include "src/__support/FPUtil/cast.h" |
| 20 | +#include "src/__support/FPUtil/except_value_utils.h" |
| 21 | +#include "src/__support/FPUtil/multiply_add.h" |
| 22 | +#include "src/__support/macros/config.h" |
| 23 | +#include "src/__support/macros/optimization.h" |
| 24 | + |
| 25 | +namespace LIBC_NAMESPACE_DECL { |
| 26 | + |
| 27 | +namespace math { |
| 28 | + |
| 29 | +namespace atanhf16_internal { |
| 30 | + |
| 31 | +// Lookup table for logf(f) = logf(1 + n*2^(-7)) where n = 0..127, |
| 32 | +// computed and stored as float precision constants. |
| 33 | +// Generated by Sollya with the following commands: |
| 34 | +// display = hexadecimal; |
| 35 | +// for n from 0 to 127 do { print(single(1 / (1 + n / 128.0))); }; |
| 36 | +static constexpr float ONE_OVER_F_FLOAT[128] = { |
| 37 | + 0x1p0f, 0x1.fc07fp-1f, 0x1.f81f82p-1f, 0x1.f4465ap-1f, |
| 38 | + 0x1.f07c2p-1f, 0x1.ecc07cp-1f, 0x1.e9131ap-1f, 0x1.e573acp-1f, |
| 39 | + 0x1.e1e1e2p-1f, 0x1.de5d6ep-1f, 0x1.dae608p-1f, 0x1.d77b66p-1f, |
| 40 | + 0x1.d41d42p-1f, 0x1.d0cb58p-1f, 0x1.cd8568p-1f, 0x1.ca4b3p-1f, |
| 41 | + 0x1.c71c72p-1f, 0x1.c3f8fp-1f, 0x1.c0e07p-1f, 0x1.bdd2b8p-1f, |
| 42 | + 0x1.bacf92p-1f, 0x1.b7d6c4p-1f, 0x1.b4e81cp-1f, 0x1.b20364p-1f, |
| 43 | + 0x1.af286cp-1f, 0x1.ac5702p-1f, 0x1.a98ef6p-1f, 0x1.a6d01ap-1f, |
| 44 | + 0x1.a41a42p-1f, 0x1.a16d4p-1f, 0x1.9ec8eap-1f, 0x1.9c2d14p-1f, |
| 45 | + 0x1.99999ap-1f, 0x1.970e5p-1f, 0x1.948b1p-1f, 0x1.920fb4p-1f, |
| 46 | + 0x1.8f9c18p-1f, 0x1.8d3018p-1f, 0x1.8acb9p-1f, 0x1.886e6p-1f, |
| 47 | + 0x1.861862p-1f, 0x1.83c978p-1f, 0x1.818182p-1f, 0x1.7f406p-1f, |
| 48 | + 0x1.7d05f4p-1f, 0x1.7ad22p-1f, 0x1.78a4c8p-1f, 0x1.767dcep-1f, |
| 49 | + 0x1.745d18p-1f, 0x1.724288p-1f, 0x1.702e06p-1f, 0x1.6e1f76p-1f, |
| 50 | + 0x1.6c16c2p-1f, 0x1.6a13cep-1f, 0x1.681682p-1f, 0x1.661ec6p-1f, |
| 51 | + 0x1.642c86p-1f, 0x1.623fa8p-1f, 0x1.605816p-1f, 0x1.5e75bcp-1f, |
| 52 | + 0x1.5c9882p-1f, 0x1.5ac056p-1f, 0x1.58ed24p-1f, 0x1.571ed4p-1f, |
| 53 | + 0x1.555556p-1f, 0x1.539094p-1f, 0x1.51d07ep-1f, 0x1.501502p-1f, |
| 54 | + 0x1.4e5e0ap-1f, 0x1.4cab88p-1f, 0x1.4afd6ap-1f, 0x1.49539ep-1f, |
| 55 | + 0x1.47ae14p-1f, 0x1.460cbcp-1f, 0x1.446f86p-1f, 0x1.42d662p-1f, |
| 56 | + 0x1.414142p-1f, 0x1.3fb014p-1f, 0x1.3e22ccp-1f, 0x1.3c995ap-1f, |
| 57 | + 0x1.3b13b2p-1f, 0x1.3991c2p-1f, 0x1.381382p-1f, 0x1.3698ep-1f, |
| 58 | + 0x1.3521dp-1f, 0x1.33ae46p-1f, 0x1.323e34p-1f, 0x1.30d19p-1f, |
| 59 | + 0x1.2f684cp-1f, 0x1.2e025cp-1f, 0x1.2c9fb4p-1f, 0x1.2b404ap-1f, |
| 60 | + 0x1.29e412p-1f, 0x1.288b02p-1f, 0x1.27350cp-1f, 0x1.25e228p-1f, |
| 61 | + 0x1.24924ap-1f, 0x1.234568p-1f, 0x1.21fb78p-1f, 0x1.20b47p-1f, |
| 62 | + 0x1.1f7048p-1f, 0x1.1e2ef4p-1f, 0x1.1cf06ap-1f, 0x1.1bb4a4p-1f, |
| 63 | + 0x1.1a7b96p-1f, 0x1.194538p-1f, 0x1.181182p-1f, 0x1.16e068p-1f, |
| 64 | + 0x1.15b1e6p-1f, 0x1.1485fp-1f, 0x1.135c82p-1f, 0x1.12358ep-1f, |
| 65 | + 0x1.111112p-1f, 0x1.0fef02p-1f, 0x1.0ecf56p-1f, 0x1.0db20ap-1f, |
| 66 | + 0x1.0c9714p-1f, 0x1.0b7e6ep-1f, 0x1.0a681p-1f, 0x1.0953f4p-1f, |
| 67 | + 0x1.08421p-1f, 0x1.07326p-1f, 0x1.0624dep-1f, 0x1.05198p-1f, |
| 68 | + 0x1.041042p-1f, 0x1.03091cp-1f, 0x1.020408p-1f, 0x1.010102p-1f}; |
| 69 | + |
| 70 | +// Lookup table for log(f) = log(1 + n*2^(-7)) where n = 0..127, |
| 71 | +// computed and stored as float precision constants. |
| 72 | +// Generated by Sollya with the following commands: |
| 73 | +// display = hexadecimal; |
| 74 | +// for n from 0 to 127 do { print(single(log(1 + n / 128.0))); }; |
| 75 | +static constexpr float LOG_F_FLOAT[128] = { |
| 76 | + 0.0f, 0x1.fe02a6p-8f, 0x1.fc0a8cp-7f, 0x1.7b91bp-6f, |
| 77 | + 0x1.f829bp-6f, 0x1.39e87cp-5f, 0x1.77459p-5f, 0x1.b42dd8p-5f, |
| 78 | + 0x1.f0a30cp-5f, 0x1.16536ep-4f, 0x1.341d7ap-4f, 0x1.51b074p-4f, |
| 79 | + 0x1.6f0d28p-4f, 0x1.8c345ep-4f, 0x1.a926d4p-4f, 0x1.c5e548p-4f, |
| 80 | + 0x1.e27076p-4f, 0x1.fec914p-4f, 0x1.0d77e8p-3f, 0x1.1b72aep-3f, |
| 81 | + 0x1.29553p-3f, 0x1.371fc2p-3f, 0x1.44d2b6p-3f, 0x1.526e5ep-3f, |
| 82 | + 0x1.5ff308p-3f, 0x1.6d60fep-3f, 0x1.7ab89p-3f, 0x1.87fa06p-3f, |
| 83 | + 0x1.9525aap-3f, 0x1.a23bc2p-3f, 0x1.af3c94p-3f, 0x1.bc2868p-3f, |
| 84 | + 0x1.c8ff7cp-3f, 0x1.d5c216p-3f, 0x1.e27076p-3f, 0x1.ef0adcp-3f, |
| 85 | + 0x1.fb9186p-3f, 0x1.04025ap-2f, 0x1.0a324ep-2f, 0x1.1058cp-2f, |
| 86 | + 0x1.1675cap-2f, 0x1.1c898cp-2f, 0x1.22942p-2f, 0x1.2895a2p-2f, |
| 87 | + 0x1.2e8e2cp-2f, 0x1.347ddap-2f, 0x1.3a64c6p-2f, 0x1.404308p-2f, |
| 88 | + 0x1.4618bcp-2f, 0x1.4be5fap-2f, 0x1.51aad8p-2f, 0x1.576772p-2f, |
| 89 | + 0x1.5d1bdcp-2f, 0x1.62c83p-2f, 0x1.686c82p-2f, 0x1.6e08eap-2f, |
| 90 | + 0x1.739d8p-2f, 0x1.792a56p-2f, 0x1.7eaf84p-2f, 0x1.842d1ep-2f, |
| 91 | + 0x1.89a338p-2f, 0x1.8f11e8p-2f, 0x1.947942p-2f, 0x1.99d958p-2f, |
| 92 | + 0x1.9f323ep-2f, 0x1.a4840ap-2f, 0x1.a9cecap-2f, 0x1.af1294p-2f, |
| 93 | + 0x1.b44f78p-2f, 0x1.b9858ap-2f, 0x1.beb4dap-2f, 0x1.c3dd7ap-2f, |
| 94 | + 0x1.c8ff7cp-2f, 0x1.ce1afp-2f, 0x1.d32fe8p-2f, 0x1.d83e72p-2f, |
| 95 | + 0x1.dd46ap-2f, 0x1.e24882p-2f, 0x1.e74426p-2f, 0x1.ec399ep-2f, |
| 96 | + 0x1.f128f6p-2f, 0x1.f6124p-2f, 0x1.faf588p-2f, 0x1.ffd2ep-2f, |
| 97 | + 0x1.02552ap-1f, 0x1.04bdfap-1f, 0x1.0723e6p-1f, 0x1.0986f4p-1f, |
| 98 | + 0x1.0be72ep-1f, 0x1.0e4498p-1f, 0x1.109f3ap-1f, 0x1.12f71ap-1f, |
| 99 | + 0x1.154c3ep-1f, 0x1.179eacp-1f, 0x1.19ee6cp-1f, 0x1.1c3b82p-1f, |
| 100 | + 0x1.1e85f6p-1f, 0x1.20cdcep-1f, 0x1.23130ep-1f, 0x1.2555bcp-1f, |
| 101 | + 0x1.2795e2p-1f, 0x1.29d38p-1f, 0x1.2c0e9ep-1f, 0x1.2e4744p-1f, |
| 102 | + 0x1.307d74p-1f, 0x1.32b134p-1f, 0x1.34e28ap-1f, 0x1.37117cp-1f, |
| 103 | + 0x1.393e0ep-1f, 0x1.3b6844p-1f, 0x1.3d9026p-1f, 0x1.3fb5b8p-1f, |
| 104 | + 0x1.41d8fep-1f, 0x1.43f9fep-1f, 0x1.4618bcp-1f, 0x1.48353ep-1f, |
| 105 | + 0x1.4a4f86p-1f, 0x1.4c679ap-1f, 0x1.4e7d82p-1f, 0x1.50913cp-1f, |
| 106 | + 0x1.52a2d2p-1f, 0x1.54b246p-1f, 0x1.56bf9ep-1f, 0x1.58cadcp-1f, |
| 107 | + 0x1.5ad404p-1f, 0x1.5cdb1ep-1f, 0x1.5ee02ap-1f, 0x1.60e33p-1f}; |
| 108 | + |
| 109 | +// x should be positive, normal finite value |
| 110 | +// TODO: Simplify range reduction and polynomial degree for float16. |
| 111 | +// See issue #137190. |
| 112 | +LIBC_INLINE static constexpr float log_eval_f(float x) { |
| 113 | + // For x = 2^ex * (1 + mx), logf(x) = ex * logf(2) + logf(1 + mx). |
| 114 | + using FPBits = fputil::FPBits<float>; |
| 115 | + FPBits xbits(x); |
| 116 | + |
| 117 | + float ex = static_cast<float>(xbits.get_exponent()); |
| 118 | + // p1 is the leading 7 bits of mx, i.e. |
| 119 | + // p1 * 2^(-7) <= m_x < (p1 + 1) * 2^(-7). |
| 120 | + int p1 = static_cast<int>(xbits.get_mantissa() >> (FPBits::FRACTION_LEN - 7)); |
| 121 | + |
| 122 | + // Set bits to (1 + (mx - p1*2^(-7))) |
| 123 | + xbits.set_uintval(xbits.uintval() & (FPBits::FRACTION_MASK >> 7)); |
| 124 | + xbits.set_biased_exponent(FPBits::EXP_BIAS); |
| 125 | + // dx = (mx - p1*2^(-7)) / (1 + p1*2^(-7)). |
| 126 | + float dx = (xbits.get_val() - 1.0f) * ONE_OVER_F_FLOAT[p1]; |
| 127 | + |
| 128 | + // Minimax polynomial for log(1 + dx), generated using Sollya: |
| 129 | + // > P = fpminimax(log(1 + x)/x, 6, [|SG...|], [0, 2^-7]); |
| 130 | + // > Q = (P - 1) / x; |
| 131 | + // > for i from 0 to degree(Q) do print(coeff(Q, i)); |
| 132 | + constexpr float COEFFS[6] = {-0x1p-1f, 0x1.555556p-2f, -0x1.00022ep-2f, |
| 133 | + 0x1.9ea056p-3f, -0x1.e50324p-2f, 0x1.c018fp3f}; |
| 134 | + |
| 135 | + float dx2 = dx * dx; |
| 136 | + |
| 137 | + float c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]); |
| 138 | + float c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]); |
| 139 | + float c3 = fputil::multiply_add(dx, COEFFS[5], COEFFS[4]); |
| 140 | + |
| 141 | + float p = fputil::polyeval(dx2, dx, c1, c2, c3); |
| 142 | + |
| 143 | + // Generated by Sollya with the following commands: |
| 144 | + // > display = hexadecimal; |
| 145 | + // > round(log(2), SG, RN); |
| 146 | + constexpr float LOGF_2 = 0x1.62e43p-1f; |
| 147 | + |
| 148 | + float result = fputil::multiply_add(ex, LOGF_2, LOG_F_FLOAT[p1] + p); |
| 149 | + return result; |
| 150 | +} |
| 151 | + |
| 152 | +} // namespace atanhf16_internal |
| 153 | + |
| 154 | +LIBC_INLINE static constexpr float16 atanhf16(float16 x) { |
| 155 | + constexpr size_t N_EXCEPTS = 1; |
| 156 | + constexpr fputil::ExceptValues<float16, N_EXCEPTS> ATANHF16_EXCEPTS{{ |
| 157 | + // (input, RZ output, RU offset, RD offset, RN offset) |
| 158 | + // x = 0x1.a5cp-4, atanhf16(x) = 0x1.a74p-4 (RZ) |
| 159 | + {0x2E97, 0x2E9D, 1, 0, 0}, |
| 160 | + }}; |
| 161 | + |
| 162 | + using namespace atanhf16_internal; |
| 163 | + using FPBits = fputil::FPBits<float16>; |
| 164 | + |
| 165 | + FPBits xbits(x); |
| 166 | + Sign sign = xbits.sign(); |
| 167 | + uint16_t x_abs = xbits.abs().uintval(); |
| 168 | + |
| 169 | + // |x| >= 1 |
| 170 | + if (LIBC_UNLIKELY(x_abs >= 0x3c00U)) { |
| 171 | + if (xbits.is_nan()) { |
| 172 | + if (xbits.is_signaling_nan()) { |
| 173 | + fputil::raise_except_if_required(FE_INVALID); |
| 174 | + return FPBits::quiet_nan().get_val(); |
| 175 | + } |
| 176 | + return x; |
| 177 | + } |
| 178 | + |
| 179 | + // |x| == 1.0 |
| 180 | + if (x_abs == 0x3c00U) { |
| 181 | + fputil::set_errno_if_required(ERANGE); |
| 182 | + fputil::raise_except_if_required(FE_DIVBYZERO); |
| 183 | + return FPBits::inf(sign).get_val(); |
| 184 | + } |
| 185 | + // |x| > 1.0 |
| 186 | + fputil::set_errno_if_required(EDOM); |
| 187 | + fputil::raise_except_if_required(FE_INVALID); |
| 188 | + return FPBits::quiet_nan().get_val(); |
| 189 | + } |
| 190 | + |
| 191 | + if (auto r = ATANHF16_EXCEPTS.lookup(xbits.uintval()); |
| 192 | + LIBC_UNLIKELY(r.has_value())) |
| 193 | + return r.value(); |
| 194 | + |
| 195 | + // For |x| less than approximately 0.24 |
| 196 | + if (LIBC_UNLIKELY(x_abs <= 0x33f3U)) { |
| 197 | + // atanh(+/-0) = +/-0 |
| 198 | + if (LIBC_UNLIKELY(x_abs == 0U)) |
| 199 | + return x; |
| 200 | + // The Taylor expansion of atanh(x) is: |
| 201 | + // atanh(x) = x + x^3/3 + x^5/5 + x^7/7 + x^9/9 + x^11/11 |
| 202 | + // = x * [1 + x^2/3 + x^4/5 + x^6/7 + x^8/9 + x^10/11] |
| 203 | + // When |x| < 2^-5 (0x0800U), this can be approximated by: |
| 204 | + // atanh(x) ≈ x + (1/3)*x^3 |
| 205 | + if (LIBC_UNLIKELY(x_abs < 0x0800U)) { |
| 206 | + float xf = x; |
| 207 | + return fputil::cast<float16>(xf + 0x1.555556p-2f * xf * xf * xf); |
| 208 | + } |
| 209 | + |
| 210 | + // For 2^-5 <= |x| <= 0x1.fccp-3 (~0.24): |
| 211 | + // Let t = x^2. |
| 212 | + // Define P(t) ≈ (1/3)*t + (1/5)*t^2 + (1/7)*t^3 + (1/9)*t^4 + (1/11)*t^5. |
| 213 | + // Coefficients (from Sollya, RN, hexadecimal): |
| 214 | + // 1/3 = 0x1.555556p-2, 1/5 = 0x1.99999ap-3, 1/7 = 0x1.24924ap-3, |
| 215 | + // 1/9 = 0x1.c71c72p-4, 1/11 = 0x1.745d18p-4 |
| 216 | + // Thus, atanh(x) ≈ x * (1 + P(x^2)). |
| 217 | + float xf = x; |
| 218 | + float x2 = xf * xf; |
| 219 | + float pe = fputil::polyeval(x2, 0.0f, 0x1.555556p-2f, 0x1.99999ap-3f, |
| 220 | + 0x1.24924ap-3f, 0x1.c71c72p-4f, 0x1.745d18p-4f); |
| 221 | + return fputil::cast<float16>(fputil::multiply_add(xf, pe, xf)); |
| 222 | + } |
| 223 | + |
| 224 | + float xf = x; |
| 225 | + return fputil::cast<float16>(0.5 * log_eval_f((xf + 1.0f) / (xf - 1.0f))); |
| 226 | +} |
| 227 | + |
| 228 | +} // namespace math |
| 229 | + |
| 230 | +} // namespace LIBC_NAMESPACE_DECL |
| 231 | + |
| 232 | +#endif // LIBC_TYPES_HAS_FLOAT16 |
| 233 | + |
| 234 | +#endif // LLVM_LIBC_SRC___SUPPORT_MATH_ATANHF16_H |
0 commit comments