Skip to content

Commit 0a1d61c

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 01d16b1a2e46879c852d9e2277ecf1d28646e1de
1 parent c3c4b28 commit 0a1d61c

File tree

1,060 files changed

+3295
-3285
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,060 files changed

+3295
-3285
lines changed
105 Bytes
Binary file not shown.
99 Bytes
Binary file not shown.

dev/_downloads/plot_feature_stacker.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"# Author: Andreas Mueller <[email protected]>\n#\n# License: BSD 3 clause\n\nfrom sklearn.pipeline import Pipeline, FeatureUnion\nfrom sklearn.model_selection import GridSearchCV\nfrom sklearn.svm import SVC\nfrom sklearn.datasets import load_iris\nfrom sklearn.decomposition import PCA\nfrom sklearn.feature_selection import SelectKBest\n\niris = load_iris()\n\nX, y = iris.data, iris.target\n\n# This dataset is way too high-dimensional. Better do PCA:\npca = PCA(n_components=2)\n\n# Maybe some original features where good, too?\nselection = SelectKBest(k=1)\n\n# Build estimator from PCA and Univariate selection:\n\ncombined_features = FeatureUnion([(\"pca\", pca), (\"univ_select\", selection)])\n\n# Use combined features to transform dataset:\nX_features = combined_features.fit(X, y).transform(X)\n\nsvm = SVC(kernel=\"linear\")\n\n# Do grid search over k, n_components and C:\n\npipeline = Pipeline([(\"features\", combined_features), (\"svm\", svm)])\n\nparam_grid = dict(features__pca__n_components=[1, 2, 3],\n features__univ_select__k=[1, 2],\n svm__C=[0.1, 1, 10])\n\ngrid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)\ngrid_search.fit(X, y)\nprint(grid_search.best_estimator_)"
29+
"# Author: Andreas Mueller <[email protected]>\n#\n# License: BSD 3 clause\n\nfrom __future__ import print_function\nfrom sklearn.pipeline import Pipeline, FeatureUnion\nfrom sklearn.model_selection import GridSearchCV\nfrom sklearn.svm import SVC\nfrom sklearn.datasets import load_iris\nfrom sklearn.decomposition import PCA\nfrom sklearn.feature_selection import SelectKBest\n\niris = load_iris()\n\nX, y = iris.data, iris.target\n\n# This dataset is way too high-dimensional. Better do PCA:\npca = PCA(n_components=2)\n\n# Maybe some original features where good, too?\nselection = SelectKBest(k=1)\n\n# Build estimator from PCA and Univariate selection:\n\ncombined_features = FeatureUnion([(\"pca\", pca), (\"univ_select\", selection)])\n\n# Use combined features to transform dataset:\nX_features = combined_features.fit(X, y).transform(X)\nprint(\"Combined space has\", X_features.shape[1], \"features\")\n\nsvm = SVC(kernel=\"linear\")\n\n# Do grid search over k, n_components and C:\n\npipeline = Pipeline([(\"features\", combined_features), (\"svm\", svm)])\n\nparam_grid = dict(features__pca__n_components=[1, 2, 3],\n features__univ_select__k=[1, 2],\n svm__C=[0.1, 1, 10])\n\ngrid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10)\ngrid_search.fit(X, y)\nprint(grid_search.best_estimator_)"
3030
]
3131
}
3232
],

dev/_downloads/plot_feature_stacker.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,7 @@
1919
#
2020
# License: BSD 3 clause
2121

22+
from __future__ import print_function
2223
from sklearn.pipeline import Pipeline, FeatureUnion
2324
from sklearn.model_selection import GridSearchCV
2425
from sklearn.svm import SVC
@@ -42,6 +43,7 @@
4243

4344
# Use combined features to transform dataset:
4445
X_features = combined_features.fit(X, y).transform(X)
46+
print("Combined space has", X_features.shape[1], "features")
4547

4648
svm = SVC(kernel="linear")
4749

dev/_downloads/scikit-learn-docs.pdf

-23.9 KB
Binary file not shown.

0 commit comments

Comments
 (0)