diff --git a/images/starcharts.svg b/images/starcharts.svg index 44ce5b9c209b1..fa40a02040215 100644 --- a/images/starcharts.svg +++ b/images/starcharts.svg @@ -1,4 +1,4 @@ - + \ No newline at end of file +L 362 335 +L 362 335 +L 362 335 +L 362 335 +L 362 335 +L 362 335 +L 363 335 +L 363 335 +L 363 335 +L 363 335 +L 363 335 +L 363 335 +L 363 335 +L 363 335 +L 363 335 +L 363 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 364 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 365 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 335 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 366 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 334 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 367 333 +L 368 333 +L 368 333 +L 368 333 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 368 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 369 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 332 +L 370 331 +L 370 331 +L 370 331 +L 370 331 +L 370 331 +L 370 331 +L 370 331 +L 370 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 371 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 331 +L 372 330 +L 372 330 +L 372 330 +L 372 330 +L 372 330 +L 372 330 +L 372 330 +L 372 330 +L 372 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 330 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 373 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 374 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 329 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 375 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 376 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 377 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 328 +L 378 327 +L 378 327 +L 378 327 +L 378 327 +L 378 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 379 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 380 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 327 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 381 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 326 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 325 +L 382 324 +L 382 324 +L 382 324 +L 382 324 +L 382 324 +L 382 324 +L 382 324 +L 382 324 +L 382 324 +L 382 324 +L 382 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 324 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 323 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 322 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 321 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 320 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 319 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 383 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 318 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 384 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 317 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 385 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 386 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 316 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 387 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 388 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 389 315 +L 390 315 +L 390 315 +L 390 315 +L 390 315 +L 390 315 +L 390 315 +L 390 315 +L 390 315 +L 390 315 +L 390 315 +L 390 315 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 390 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 391 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 314 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 313 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 392 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 312 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 311 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 310 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 309 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 308 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 307 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 306 +L 393 305 +L 393 305 +L 393 305 +L 393 305 +L 393 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 305 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 304 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 394 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 303 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 302 +L 395 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 396 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 301 +L 397 300 +L 397 300 +L 397 300 +L 397 300 +L 397 300 +L 397 300 +L 397 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 398 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 399 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 300 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 400 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 299 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 401 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 402 298 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 403 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 404 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 405 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 297 +L 406 296 +L 406 296 +L 406 296 +L 406 296 +L 406 296 +L 406 296 +L 406 296 +L 406 296 +L 406 296 +L 406 296 +L 406 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 407 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 408 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 409 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 296 +L 410 295 +L 410 295 +L 410 295 +L 410 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 411 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 412 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 295 +L 413 294 +L 413 294 +L 413 294 +L 413 294 +L 413 294 +L 413 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 414 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 415 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 416 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 294 +L 417 293 +L 417 293 +L 417 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 418 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 419 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 420 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 421 293 +L 422 293 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 422 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 423 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 424 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 425 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 292 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 426 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 291 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 427 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 290 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 428 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 289 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 429 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 430 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 288 +L 431 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 432 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 433 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 287 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 434 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 435 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 286 +L 436 285 +L 436 285 +L 436 285 +L 436 285 +L 436 285 +L 436 285 +L 436 285 +L 436 285 +L 436 285 +L 436 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 437 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 438 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 439 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 285 +L 440 284 +L 440 284 +L 440 284 +L 440 284 +L 440 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 441 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 442 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 443 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 284 +L 444 283 +L 444 283 +L 444 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 445 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 446 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 447 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 448 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 283 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 449 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 450 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 451 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 452 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 453 282 +L 454 282 +L 454 282 +L 454 282 +L 454 282 +L 454 282 +L 454 282 +L 454 282 +L 454 281 +L 454 281 +L 454 281 +L 454 281 +L 454 281 +L 454 281 +L 454 281 +L 454 281 +L 454 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 455 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 456 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 457 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 458 281 +L 459 281 +L 459 281 +L 459 281 +L 459 281 +L 459 281 +L 459 281 +L 459 281 +L 459 281 +L 459 280 +L 459 280 +L 459 280 +L 459 280 +L 460 280 +L 460 280 +L 460 280 +L 460 280 +L 460 280 +L 460 280 +L 460 280 +L 460 280 +L 460 280 +L 460 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 461 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 462 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 280 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 279 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 278 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 463 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 277 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 276 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 275 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 274 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 464 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 273 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 272 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 271 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 270 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 465 269 +L 466 269 +L 466 269 +L 466 269 +L 466 269 +L 466 269 +L 466 269 +L 466 269 +L 466 269 +L 466 269 +L 466 269 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 268 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 267 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 466 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 266 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 467 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 468 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 469 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 265 +L 470 264 +L 470 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 471 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 472 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 473 264 +L 474 264 +L 474 264 +L 474 264 +L 474 264 +L 474 264 +L 474 264 +L 474 264 +L 474 264 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 474 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 263 +L 475 262 +L 475 262 +L 475 262 +L 475 262 +L 475 262 +L 475 262 +L 475 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 476 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 477 262 +L 478 262 +L 478 262 +L 478 262 +L 478 262 +L 478 262 +L 478 262 +L 478 262 +L 478 262 +L 478 262 +L 478 262 +L 478 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 479 262 +L 480 262 +L 480 262 +L 480 262 +L 480 262 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 261 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 480 260 +L 481 260 +L 481 260 +L 481 260 +L 481 260 +L 481 260 +L 481 260 +L 481 260 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 259 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 258 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 257 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 256 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 255 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 254 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 481 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 253 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 252 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 251 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 250 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 249 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 248 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 247 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 246 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 482 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 245 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 244 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 483 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 243 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 484 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 242 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 485 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 241 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 486 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 240 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 239 +L 487 238 +L 487 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 488 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 238 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 489 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 237 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 490 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 236 +L 491 235 +L 491 235 +L 491 235 +L 491 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 492 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 235 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 234 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 493 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 233 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 494 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 495 232 +L 496 232 +L 496 232 +L 496 232 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 496 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 497 231 +L 498 231 +L 498 231 +L 498 231 +L 498 231 +L 498 231 +L 498 231 +L 498 231 +L 498 231 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 498 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 499 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 500 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 230 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 501 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 229 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 502 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 503 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 228 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 504 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 505 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 506 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 227 +L 507 226 +L 507 226 +L 507 226 +L 507 226 +L 507 226 +L 507 226 +L 507 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 508 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 509 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 510 226 +L 511 226 +L 511 226 +L 511 226 +L 511 226 +L 511 226 +L 511 226 +L 511 226 +L 511 226 +L 511 226 +L 511 226 +L 511 225 +L 511 225 +L 511 225 +L 511 225 +L 511 225 +L 511 225 +L 511 225 +L 511 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 512 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 513 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 225 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 514 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 515 224 +L 516 224 +L 516 224 +L 516 224 +L 516 224 +L 516 224 +L 516 224 +L 516 224 +L 516 224 +L 516 224 +L 516 224 +L 516 223 +L 516 223 +L 516 223 +L 516 223 +L 516 223 +L 516 223 +L 516 223 +L 516 223 +L 516 223 +L 516 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 517 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 518 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 223 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 519 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 520 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 521 222 +L 522 222 +L 522 222 +L 522 222 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 522 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 523 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 221 +L 524 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 525 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 526 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 220 +L 527 219 +L 527 219 +L 527 219 +L 527 219 +L 527 219 +L 527 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 528 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 529 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 530 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 531 219 +L 532 219 +L 532 219 +L 532 219 +L 532 219 +L 532 219 +L 532 219 +L 532 219 +L 532 219 +L 532 219 +L 532 219 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 532 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 533 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 534 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 218 +L 535 217 +L 535 217 +L 535 217 +L 535 217 +L 535 217 +L 535 217 +L 535 217 +L 535 217 +L 535 217 +L 535 217 +L 535 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 536 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 537 217 +L 538 217 +L 538 217 +L 538 217 +L 538 217 +L 538 217 +L 538 217 +L 538 217 +L 538 217 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 538 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 539 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 540 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 216 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 541 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 542 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 215 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 543 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 544 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 214 +L 545 213 +L 545 213 +L 545 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 546 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 547 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 213 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 548 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 212 +L 549 211 +L 549 211 +L 549 211 +L 549 211 +L 549 211 +L 549 211 +L 549 211 +L 549 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 550 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 211 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 551 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 552 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 210 +L 553 209 +L 553 209 +L 553 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 554 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 555 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 556 209 +L 557 209 +L 557 209 +L 557 209 +L 557 209 +L 557 209 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 557 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 208 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 207 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 206 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 558 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 205 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 204 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 203 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 202 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 201 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 559 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 200 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 199 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 198 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 197 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 560 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 196 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 195 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 561 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 194 +L 562 193 +L 562 193 +L 562 193 +L 562 193 +L 562 193 +L 562 193 +L 562 193 +L 562 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 563 193 +L 564 193 +L 564 193 +L 564 193 +L 564 193 +L 564 193 +L 564 193 +L 564 193 +L 564 193 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 564 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 192 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 565 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 191 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 566 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 567 190 +L 568 190 +L 568 190 +L 568 190 +L 568 190 +L 568 190 +L 568 190 +L 568 190 +L 568 190 +L 568 190 +L 568 190 +L 568 190 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 568 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 189 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 569 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 188 +L 570 187 +L 570 187 +L 570 187 +L 570 187 +L 570 187 +L 570 187 +L 570 187 +L 570 187 +L 570 187 +L 570 187 +L 570 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 571 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 572 187 +L 573 187 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 573 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 574 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 575 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 186 +L 576 185 +L 576 185 +L 576 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 577 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 578 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 579 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 580 185 +L 581 185 +L 581 185 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 581 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 582 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 583 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 184 +L 584 183 +L 584 183 +L 584 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 585 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 586 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 587 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 588 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 183 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 589 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 590 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 591 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 592 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 593 182 +L 594 182 +L 594 182 +L 594 182 +L 594 182 +L 594 182 +L 594 182 +L 594 182 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 594 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 595 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 181 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 596 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 180 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 179 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 178 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 177 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 176 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 175 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 597 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 174 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 173 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 172 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 598 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 171 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 599 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 600 170 +L 601 170 +L 601 170 +L 601 170 +L 601 170 +L 601 170 +L 601 170 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 601 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 169 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 602 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 603 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 168 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 604 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 605 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 167 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 606 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 607 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 608 166 +L 609 166 +L 609 166 +L 609 166 +L 609 166 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 609 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 610 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 611 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 612 165 +L 613 165 +L 613 165 +L 613 165 +L 613 165 +L 613 165 +L 613 165 +L 613 165 +L 613 165 +L 613 164 +L 613 164 +L 614 164 +L 614 164 +L 614 164 +L 614 164 +L 614 164 +L 614 164 +L 614 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 164 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 615 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 163 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 162 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 161 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 616 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 160 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 617 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 159 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 618 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 158 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 619 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 620 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 157 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 621 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 156 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 622 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 155 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 623 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 154 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 624 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 625 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 153 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 626 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 627 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 152 +L 628 151 +L 628 151 +L 628 151 +L 628 151 +L 628 151 +L 628 151 +L 628 151 +L 628 151 +L 628 151 +L 628 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 629 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 630 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 151 +L 631 150 +L 631 150 +L 631 150 +L 631 150 +L 631 150 +L 631 150 +L 631 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 632 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 633 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 150 +L 634 149 +L 634 149 +L 634 149 +L 634 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 635 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 636 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 149 +L 637 148 +L 637 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 638 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 639 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 640 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 148 +L 641 147 +L 641 147 +L 641 147 +L 641 147 +L 641 147 +L 641 147 +L 641 147 +L 641 147 +L 641 147 +L 641 147 +L 641 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 642 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 643 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 147 +L 644 146 +L 644 146 +L 644 146 +L 644 146 +L 644 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 645 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 646 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 146 +L 647 145 +L 647 145 +L 647 145 +L 647 145 +L 647 145 +L 647 145 +L 647 145 +L 647 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 648 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 649 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 650 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 651 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 145 +L 652 144 +L 652 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 653 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 654 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 655 144 +L 656 144 +L 656 144 +L 656 144 +L 656 144 +L 656 144 +L 656 144 +L 656 144 +L 656 144 +L 656 144 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 656 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 657 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 658 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 659 143 +L 660 143 +L 660 143 +L 660 143 +L 660 143 +L 660 143 +L 660 143 +L 660 143 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 660 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 661 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 662 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 663 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 142 +L 664 141 +L 664 141 +L 664 141 +L 664 141 +L 664 141 +L 664 141 +L 664 141 +L 664 141 +L 664 141 +L 664 141 +L 664 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 665 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 666 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 667 141 +L 668 141 +L 668 141 +L 668 141 +L 668 141 +L 668 141 +L 668 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 141 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 669 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 670 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 671 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 672 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 140 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 673 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 674 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 675 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 676 139 +L 677 139 +L 677 139 +L 677 139 +L 677 139 +L 677 139 +L 677 139 +L 677 139 +L 677 139 +L 677 139 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 677 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 678 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 679 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 138 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 680 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 681 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 682 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 137 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 683 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 684 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 685 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 686 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 136 +L 687 135 +L 687 135 +L 687 135 +L 687 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 688 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 689 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 690 135 +L 691 135 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 691 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 692 134 +L 693 134 +L 693 134 +L 693 134 +L 693 134 +L 693 134 +L 693 134 +L 693 134 +L 693 134 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 693 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 694 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 695 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 133 +L 696 132 +L 696 132 +L 696 132 +L 696 132 +L 696 132 +L 696 132 +L 696 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 697 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 698 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 132 +L 699 131 +L 699 131 +L 699 131 +L 699 131 +L 699 131 +L 699 131 +L 699 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 700 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 701 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 702 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 131 +L 703 130 +L 703 130 +L 703 130 +L 703 130 +L 703 130 +L 703 130 +L 703 130 +L 703 130 +L 703 130 +L 703 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 704 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 705 130 +L 706 130 +L 706 130 +L 706 130 +L 706 130 +L 706 130 +L 706 130 +L 706 130 +L 706 130 +L 706 130 +L 706 130 +L 706 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 707 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 130 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 129 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 708 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 128 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 127 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 126 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 125 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 709 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 124 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 123 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 122 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 121 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 120 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 710 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 119 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 118 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 711 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 712 117 +L 713 117 +L 713 117 +L 713 117 +L 713 117 +L 713 117 +L 713 117 +L 713 117 +L 713 117 +L 713 117 +L 713 117 +L 713 117 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 713 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 116 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 714 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 115 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 114 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 715 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 113 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 716 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 112 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 717 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 111 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 718 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 110 +L 719 109 +L 719 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 720 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 109 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 721 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 722 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 108 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 723 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 107 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 106 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 724 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 105 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 725 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 726 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 104 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 727 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 728 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 103 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 729 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 730 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 102 +L 731 101 +L 731 101 +L 731 101 +L 731 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 732 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 101 +L 733 100 +L 733 100 +L 733 100 +L 733 100 +L 733 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 734 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 735 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 100 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 736 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 737 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 738 99 +L 739 99 +L 739 99 +L 739 99 +L 739 99 +L 739 99 +L 739 99 +L 739 99 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 739 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 740 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 98 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 741 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 742 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 97 +L 743 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 744 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 745 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 96 +L 746 95 +L 746 95 +L 746 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 747 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 748 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 95 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 94 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 93 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 92 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 749 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 91 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 90 +L 750 89 +L 750 89 +L 750 89 +L 750 89 +L 750 89 +L 750 89 +L 750 89 +L 750 89 +L 750 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 89 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 751 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 752 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 753 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 88 +L 754 87 +L 754 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 755 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 87 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 756 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 757 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 86 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 758 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 759 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 85 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 760 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 761 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 84 +L 762 83 +L 762 83 +L 762 83 +L 762 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 763 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 83 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 764 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 765 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 82 +L 766 81 +L 766 81 +L 766 81 +L 766 81 +L 766 81 +L 766 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 767 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 768 81 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 769 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 80 +L 770 79 +L 770 79 +L 770 79 +L 770 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 771 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 79 +L 772 78 +L 772 78 +L 772 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 773 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 774 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 775 78 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 776 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 777 77 +L 778 77 +L 778 77 +L 778 77 +L 778 77 +L 778 77 +L 778 77 +L 778 77 +L 778 77 +L 778 77 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 778 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 779 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 780 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 76 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 781 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 782 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 783 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 75 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 784 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 785 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 74 +L 786 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 787 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 788 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 73 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 789 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 790 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 791 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 72 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 792 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 793 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 71 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 794 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 795 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 796 70 +L 797 70 +L 797 70 +L 797 70 +L 797 70 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 797 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 798 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 799 69 +L 800 69 +L 800 69 +L 800 69 +L 800 69 +L 800 69 +L 800 69 +L 800 69 +L 800 69 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 800 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 801 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 68 +L 802 67 +L 802 67 +L 802 67 +L 802 67 +L 802 67 +L 802 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 803 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 804 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 67 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 805 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 806 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 807 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 66 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 808 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 809 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 65 +L 810 64 +L 810 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 811 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 812 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 64 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 813 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 814 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 63 +L 815 62 +L 815 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 816 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 62 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 817 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 818 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 61 +L 819 60 +L 819 60 +L 819 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 820 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 821 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 60 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 822 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 823 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 59 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 824 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 825 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 58 +L 826 57 +L 826 57 +L 826 57 +L 826 57 +L 826 57 +L 826 57 +L 826 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 827 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 57 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 828 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 829 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 830 56 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 831 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 832 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 55 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 833 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 834 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 54 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 835 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 836 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 53 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 837 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 838 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 839 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 52 +L 840 51 +L 840 51 +L 840 51 +L 840 51 +L 840 51 +L 840 51 +L 840 51 +L 840 51 +L 840 51 +L 840 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 841 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 842 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 51 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 843 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 844 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 50 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 845 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 846 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 847 49 +L 848 49 +L 848 49 +L 848 49 +L 848 49 +L 848 49 +L 848 49 +L 848 49 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 848 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 849 48 +L 850 48 +L 850 48 +L 850 48 +L 850 48 +L 850 48 +L 850 48 +L 850 48 +L 850 48 +L 850 48 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 850 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 851 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 47 +L 852 46 +L 852 46 +L 852 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 853 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 46 +L 854 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 855 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 856 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 45 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 857 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 858 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 859 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 44 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 860 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 861 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 862 43 +L 863 43 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 863 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 864 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 42 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 865 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 866 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 867 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 41 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 868 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 869 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 40 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 870 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 871 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 39 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 872 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 873 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 38 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 874 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 875 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 37 +L 876 36 +L 876 36 +L 876 36 +L 876 36 +L 876 36 +L 876 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 877 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 878 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 36 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 879 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 880 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 881 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 35 +L 882 34 +L 882 34 +L 882 34 +L 882 34 +L 882 34 +L 882 34 +L 882 34 +L 882 34 +L 882 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 883 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 884 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 885 34 +L 886 34 +L 886 34 +L 886 34 +L 886 34 +L 886 34 +L 886 34 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 886 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 887 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 888 33 +L 889 33 +L 889 33 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 889 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 890 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 32 +L 891 31 +L 891 31 +L 891 31 +L 891 31 +L 891 31 +L 891 31 +L 891 31 +L 891 31 +L 891 31 +L 891 31 +L 891 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 892 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 893 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 31 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 894 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 895 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 896 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 30 +L 897 29 +L 897 29 +L 897 29 +L 897 29 +L 897 29 +L 897 29 +L 897 29 +L 897 29 +L 897 29 +L 897 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 898 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 899 29 +L 900 29 +L 900 29 +L 900 29 +L 900 29 +L 900 29 +L 900 29 +L 900 29 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 900 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 901 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 902 28 +L 903 28 +L 903 28 +L 903 28 +L 903 28 +L 903 28 +L 903 28 +L 903 28 +L 903 28 +L 903 28 +L 903 28 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 903 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 904 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 905 27 +L 906 27 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 906 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 907 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 26 +L 908 25 +L 908 25 +L 908 25 +L 908 25 +L 908 25 +L 908 25 +L 908 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 909 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 910 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 25 +L 911 24 +L 911 24 +L 911 24 +L 911 24 +L 911 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 912 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 913 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 24 +L 914 23 +L 914 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 915 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 916 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 917 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 23 +L 918 22 +L 918 22 +L 918 22 +L 918 22 +L 918 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 919 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 920 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 921 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 22 +L 922 21 +L 922 21 +L 922 21 +L 922 21 +L 922 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 923 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 924 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 925 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 21 +L 926 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 927 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 928 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 929 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 930 20 +L 931 20 +L 931 20 +L 931 20 +L 931 20 +L 931 20 +L 931 20 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 931 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 932 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 933 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 934 19 +L 935 19 +L 935 19 +L 935 19 +L 935 19 +L 935 19 +L 935 19 +L 935 19 +L 935 19 +L 935 19 +L 935 18 +L 935 18 +L 935 18 +L 935 18 +L 935 18 +L 935 18 +L 935 18 +L 935 18 +L 935 18 +L 935 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 936 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 937 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 938 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 939 18 +L 940 18 +L 940 18 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 940 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 941 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 942 17 +L 943 17 +L 943 17 +L 943 17 +L 943 17 +L 943 17 +L 943 17 +L 943 17 +L 943 17 +L 943 17 +L 943 17 +L 943 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 944 17 +L 945 17 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 945 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 946 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 947 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 948 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 16 +L 949 15 +L 949 15 +L 949 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15 +L 950 15" style="stroke-width:2;stroke:rgba(129,199,239,1.0);fill:none"/> \ No newline at end of file diff --git a/solution/0000-0099/0008.String to Integer (atoi)/README.md b/solution/0000-0099/0008.String to Integer (atoi)/README.md index 87634a3e1f38a..324738cca1c5e 100644 --- a/solution/0000-0099/0008.String to Integer (atoi)/README.md +++ b/solution/0000-0099/0008.String to Integer (atoi)/README.md @@ -386,6 +386,36 @@ class Solution { } ``` +#### C + +```c +int myAtoi(char* s) { + int i = 0; + + while (s[i] == ' ') { + i++; + } + + int sign = 1; + if (s[i] == '-' || s[i] == '+') { + sign = (s[i] == '-') ? -1 : 1; + i++; + } + + int res = 0; + while (isdigit(s[i])) { + int digit = s[i] - '0'; + if (res > INT_MAX / 10 || (res == INT_MAX / 10 && digit > INT_MAX % 10)) { + return sign == 1 ? INT_MAX : INT_MIN; + } + res = res * 10 + digit; + i++; + } + + return res * sign; +} +``` + diff --git a/solution/0000-0099/0008.String to Integer (atoi)/README_EN.md b/solution/0000-0099/0008.String to Integer (atoi)/README_EN.md index 05ee6458e6711..bc0c422b89134 100644 --- a/solution/0000-0099/0008.String to Integer (atoi)/README_EN.md +++ b/solution/0000-0099/0008.String to Integer (atoi)/README_EN.md @@ -374,6 +374,36 @@ class Solution { } ``` +#### C + +```c +int myAtoi(char* s) { + int i = 0; + + while (s[i] == ' ') { + i++; + } + + int sign = 1; + if (s[i] == '-' || s[i] == '+') { + sign = (s[i] == '-') ? -1 : 1; + i++; + } + + int res = 0; + while (isdigit(s[i])) { + int digit = s[i] - '0'; + if (res > INT_MAX / 10 || (res == INT_MAX / 10 && digit > INT_MAX % 10)) { + return sign == 1 ? INT_MAX : INT_MIN; + } + res = res * 10 + digit; + i++; + } + + return res * sign; +} +``` + diff --git a/solution/0000-0099/0008.String to Integer (atoi)/Solution.c b/solution/0000-0099/0008.String to Integer (atoi)/Solution.c new file mode 100644 index 0000000000000..26f63ab4316e3 --- /dev/null +++ b/solution/0000-0099/0008.String to Integer (atoi)/Solution.c @@ -0,0 +1,25 @@ +int myAtoi(char* s) { + int i = 0; + + while (s[i] == ' ') { + i++; + } + + int sign = 1; + if (s[i] == '-' || s[i] == '+') { + sign = (s[i] == '-') ? -1 : 1; + i++; + } + + int res = 0; + while (isdigit(s[i])) { + int digit = s[i] - '0'; + if (res > INT_MAX / 10 || (res == INT_MAX / 10 && digit > INT_MAX % 10)) { + return sign == 1 ? INT_MAX : INT_MIN; + } + res = res * 10 + digit; + i++; + } + + return res * sign; +} diff --git a/solution/0000-0099/0009.Palindrome Number/README.md b/solution/0000-0099/0009.Palindrome Number/README.md index 5293dccce090b..46fbfac16ef77 100644 --- a/solution/0000-0099/0009.Palindrome Number/README.md +++ b/solution/0000-0099/0009.Palindrome Number/README.md @@ -248,6 +248,24 @@ class Solution { } ``` +#### C + +```c +bool isPalindrome(int x) { + if (x < 0 || (x != 0 && x % 10 == 0)) { + return false; + } + + int y = 0; + while (y < x) { + y = y * 10 + x % 10; + x /= 10; + } + + return (x == y || x == y / 10); +} +``` + diff --git a/solution/0000-0099/0009.Palindrome Number/README_EN.md b/solution/0000-0099/0009.Palindrome Number/README_EN.md index 8b0ac2e383ca0..712ba430b9d5a 100644 --- a/solution/0000-0099/0009.Palindrome Number/README_EN.md +++ b/solution/0000-0099/0009.Palindrome Number/README_EN.md @@ -240,6 +240,24 @@ class Solution { } ``` +#### C + +```c +bool isPalindrome(int x) { + if (x < 0 || (x != 0 && x % 10 == 0)) { + return false; + } + + int y = 0; + while (y < x) { + y = y * 10 + x % 10; + x /= 10; + } + + return (x == y || x == y / 10); +} +``` + diff --git a/solution/0000-0099/0009.Palindrome Number/Solution.c b/solution/0000-0099/0009.Palindrome Number/Solution.c new file mode 100644 index 0000000000000..c13f8cc7947ca --- /dev/null +++ b/solution/0000-0099/0009.Palindrome Number/Solution.c @@ -0,0 +1,13 @@ +bool isPalindrome(int x) { + if (x < 0 || (x != 0 && x % 10 == 0)) { + return false; + } + + int y = 0; + while (y < x) { + y = y * 10 + x % 10; + x /= 10; + } + + return (x == y || x == y / 10); +} diff --git a/solution/0000-0099/0010.Regular Expression Matching/README.md b/solution/0000-0099/0010.Regular Expression Matching/README.md index 5eb9ff8be6f3d..e9acc4602cc81 100644 --- a/solution/0000-0099/0010.Regular Expression Matching/README.md +++ b/solution/0000-0099/0010.Regular Expression Matching/README.md @@ -331,6 +331,85 @@ public class Solution { } ``` +#### C + +```c +#define MAX_LEN 1000 + +char *ss, *pp; +int m, n; +int f[MAX_LEN + 1][MAX_LEN + 1]; + +bool dfs(int i, int j) { + if (j >= n) { + return i == m; + } + if (f[i][j] != 0) { + return f[i][j] == 1; + } + int res = -1; + if (j + 1 < n && pp[j + 1] == '*') { + if (dfs(i, j + 2) || (i < m && (ss[i] == pp[j] || pp[j] == '.') && dfs(i + 1, j))) { + res = 1; + } + } else if (i < m && (ss[i] == pp[j] || pp[j] == '.') && dfs(i + 1, j + 1)) { + res = 1; + } + f[i][j] = res; + return res == 1; +} + +bool isMatch(char* s, char* p) { + ss = s; + pp = p; + m = strlen(s); + n = strlen(p); + memset(f, 0, sizeof(f)); + return dfs(0, 0); +} +``` + +#### PHP + +```php +class Solution { + /** + * @param String $s + * @param String $p + * @return Boolean + */ + function isMatch($s, $p) { + $m = strlen($s); + $n = strlen($p); + $f = array_fill(0, $m + 1, array_fill(0, $n + 1, 0)); + + $dfs = function ($i, $j) use (&$s, &$p, $m, $n, &$f, &$dfs) { + if ($j >= $n) { + return $i == $m; + } + if ($f[$i][$j] != 0) { + return $f[$i][$j] == 1; + } + $res = -1; + if ($j + 1 < $n && $p[$j + 1] == '*') { + if ( + $dfs($i, $j + 2) || + ($i < $m && ($s[$i] == $p[$j] || $p[$j] == '.') && $dfs($i + 1, $j)) + ) { + $res = 1; + } + } elseif ($i < $m && ($s[$i] == $p[$j] || $p[$j] == '.') && $dfs($i + 1, $j + 1)) { + $res = 1; + } + $f[$i][$j] = $res; + return $res == 1; + }; + + return $dfs(0, 0); + } +} +``` + @@ -541,44 +620,60 @@ public class Solution { ```php class Solution { /** - * @param string $s - * @param string $p - * @return boolean + * @param String $s + * @param String $p + * @return Boolean */ - function isMatch($s, $p) { $m = strlen($s); $n = strlen($p); - $dp = array_fill(0, $m + 1, array_fill(0, $n + 1, false)); - $dp[0][0] = true; - - for ($j = 1; $j <= $n; $j++) { - if ($p[$j - 1] == '*') { - $dp[0][$j] = $dp[0][$j - 2]; - } - } + $f = array_fill(0, $m + 1, array_fill(0, $n + 1, false)); + $f[0][0] = true; - for ($i = 1; $i <= $m; $i++) { + for ($i = 0; $i <= $m; $i++) { for ($j = 1; $j <= $n; $j++) { - if ($p[$j - 1] == '.' || $p[$j - 1] == $s[$i - 1]) { - $dp[$i][$j] = $dp[$i - 1][$j - 1]; - } elseif ($p[$j - 1] == '*') { - $dp[$i][$j] = $dp[$i][$j - 2]; - if ($p[$j - 2] == '.' || $p[$j - 2] == $s[$i - 1]) { - $dp[$i][$j] = $dp[$i][$j] || $dp[$i - 1][$j]; + if ($p[$j - 1] == '*') { + $f[$i][$j] = $f[$i][$j - 2]; + if ($i > 0 && ($p[$j - 2] == '.' || $p[$j - 2] == $s[$i - 1])) { + $f[$i][$j] = $f[$i][$j] || $f[$i - 1][$j]; } - } else { - $dp[$i][$j] = false; + } elseif ($i > 0 && ($p[$j - 1] == '.' || $p[$j - 1] == $s[$i - 1])) { + $f[$i][$j] = $f[$i - 1][$j - 1]; } } } - return $dp[$m][$n]; + return $f[$m][$n]; } } ``` +#### C + +```c +bool isMatch(char* s, char* p) { + int m = strlen(s), n = strlen(p); + bool f[m + 1][n + 1]; + memset(f, 0, sizeof(f)); + f[0][0] = true; + + for (int i = 0; i <= m; ++i) { + for (int j = 1; j <= n; ++j) { + if (p[j - 1] == '*') { + f[i][j] = f[i][j - 2]; + if (i > 0 && (p[j - 2] == '.' || p[j - 2] == s[i - 1])) { + f[i][j] = f[i][j] || f[i - 1][j]; + } + } else if (i > 0 && (p[j - 1] == '.' || p[j - 1] == s[i - 1])) { + f[i][j] = f[i - 1][j - 1]; + } + } + } + return f[m][n]; +} +``` + diff --git a/solution/0000-0099/0010.Regular Expression Matching/README_EN.md b/solution/0000-0099/0010.Regular Expression Matching/README_EN.md index d7302fddd9809..3164f471dd8c2 100644 --- a/solution/0000-0099/0010.Regular Expression Matching/README_EN.md +++ b/solution/0000-0099/0010.Regular Expression Matching/README_EN.md @@ -330,6 +330,85 @@ public class Solution { } ``` +#### C + +```c +#define MAX_LEN 1000 + +char *ss, *pp; +int m, n; +int f[MAX_LEN + 1][MAX_LEN + 1]; + +bool dfs(int i, int j) { + if (j >= n) { + return i == m; + } + if (f[i][j] != 0) { + return f[i][j] == 1; + } + int res = -1; + if (j + 1 < n && pp[j + 1] == '*') { + if (dfs(i, j + 2) || (i < m && (ss[i] == pp[j] || pp[j] == '.') && dfs(i + 1, j))) { + res = 1; + } + } else if (i < m && (ss[i] == pp[j] || pp[j] == '.') && dfs(i + 1, j + 1)) { + res = 1; + } + f[i][j] = res; + return res == 1; +} + +bool isMatch(char* s, char* p) { + ss = s; + pp = p; + m = strlen(s); + n = strlen(p); + memset(f, 0, sizeof(f)); + return dfs(0, 0); +} +``` + +#### PHP + +```php +class Solution { + /** + * @param String $s + * @param String $p + * @return Boolean + */ + function isMatch($s, $p) { + $m = strlen($s); + $n = strlen($p); + $f = array_fill(0, $m + 1, array_fill(0, $n + 1, 0)); + + $dfs = function ($i, $j) use (&$s, &$p, $m, $n, &$f, &$dfs) { + if ($j >= $n) { + return $i == $m; + } + if ($f[$i][$j] != 0) { + return $f[$i][$j] == 1; + } + $res = -1; + if ($j + 1 < $n && $p[$j + 1] == '*') { + if ( + $dfs($i, $j + 2) || + ($i < $m && ($s[$i] == $p[$j] || $p[$j] == '.') && $dfs($i + 1, $j)) + ) { + $res = 1; + } + } elseif ($i < $m && ($s[$i] == $p[$j] || $p[$j] == '.') && $dfs($i + 1, $j + 1)) { + $res = 1; + } + $f[$i][$j] = $res; + return $res == 1; + }; + + return $dfs(0, 0); + } +} +``` + @@ -540,44 +619,60 @@ public class Solution { ```php class Solution { /** - * @param string $s - * @param string $p - * @return boolean + * @param String $s + * @param String $p + * @return Boolean */ - function isMatch($s, $p) { $m = strlen($s); $n = strlen($p); - $dp = array_fill(0, $m + 1, array_fill(0, $n + 1, false)); - $dp[0][0] = true; - - for ($j = 1; $j <= $n; $j++) { - if ($p[$j - 1] == '*') { - $dp[0][$j] = $dp[0][$j - 2]; - } - } + $f = array_fill(0, $m + 1, array_fill(0, $n + 1, false)); + $f[0][0] = true; - for ($i = 1; $i <= $m; $i++) { + for ($i = 0; $i <= $m; $i++) { for ($j = 1; $j <= $n; $j++) { - if ($p[$j - 1] == '.' || $p[$j - 1] == $s[$i - 1]) { - $dp[$i][$j] = $dp[$i - 1][$j - 1]; - } elseif ($p[$j - 1] == '*') { - $dp[$i][$j] = $dp[$i][$j - 2]; - if ($p[$j - 2] == '.' || $p[$j - 2] == $s[$i - 1]) { - $dp[$i][$j] = $dp[$i][$j] || $dp[$i - 1][$j]; + if ($p[$j - 1] == '*') { + $f[$i][$j] = $f[$i][$j - 2]; + if ($i > 0 && ($p[$j - 2] == '.' || $p[$j - 2] == $s[$i - 1])) { + $f[$i][$j] = $f[$i][$j] || $f[$i - 1][$j]; } - } else { - $dp[$i][$j] = false; + } elseif ($i > 0 && ($p[$j - 1] == '.' || $p[$j - 1] == $s[$i - 1])) { + $f[$i][$j] = $f[$i - 1][$j - 1]; } } } - return $dp[$m][$n]; + return $f[$m][$n]; } } ``` +#### C + +```c +bool isMatch(char* s, char* p) { + int m = strlen(s), n = strlen(p); + bool f[m + 1][n + 1]; + memset(f, 0, sizeof(f)); + f[0][0] = true; + + for (int i = 0; i <= m; ++i) { + for (int j = 1; j <= n; ++j) { + if (p[j - 1] == '*') { + f[i][j] = f[i][j - 2]; + if (i > 0 && (p[j - 2] == '.' || p[j - 2] == s[i - 1])) { + f[i][j] = f[i][j] || f[i - 1][j]; + } + } else if (i > 0 && (p[j - 1] == '.' || p[j - 1] == s[i - 1])) { + f[i][j] = f[i - 1][j - 1]; + } + } + } + return f[m][n]; +} +``` + diff --git a/solution/0000-0099/0010.Regular Expression Matching/Solution.c b/solution/0000-0099/0010.Regular Expression Matching/Solution.c new file mode 100644 index 0000000000000..db0116921230e --- /dev/null +++ b/solution/0000-0099/0010.Regular Expression Matching/Solution.c @@ -0,0 +1,33 @@ +#define MAX_LEN 1000 + +char *ss, *pp; +int m, n; +int f[MAX_LEN + 1][MAX_LEN + 1]; + +bool dfs(int i, int j) { + if (j >= n) { + return i == m; + } + if (f[i][j] != 0) { + return f[i][j] == 1; + } + int res = -1; + if (j + 1 < n && pp[j + 1] == '*') { + if (dfs(i, j + 2) || (i < m && (ss[i] == pp[j] || pp[j] == '.') && dfs(i + 1, j))) { + res = 1; + } + } else if (i < m && (ss[i] == pp[j] || pp[j] == '.') && dfs(i + 1, j + 1)) { + res = 1; + } + f[i][j] = res; + return res == 1; +} + +bool isMatch(char* s, char* p) { + ss = s; + pp = p; + m = strlen(s); + n = strlen(p); + memset(f, 0, sizeof(f)); + return dfs(0, 0); +} diff --git a/solution/0000-0099/0010.Regular Expression Matching/Solution.php b/solution/0000-0099/0010.Regular Expression Matching/Solution.php index 85a7f34fe75da..fc9aca3447ffe 100644 --- a/solution/0000-0099/0010.Regular Expression Matching/Solution.php +++ b/solution/0000-0099/0010.Regular Expression Matching/Solution.php @@ -1,38 +1,36 @@ class Solution { /** - * @param string $s - * @param string $p - * @return boolean + * @param String $s + * @param String $p + * @return Boolean */ - function isMatch($s, $p) { $m = strlen($s); $n = strlen($p); + $f = array_fill(0, $m + 1, array_fill(0, $n + 1, 0)); - $dp = array_fill(0, $m + 1, array_fill(0, $n + 1, false)); - $dp[0][0] = true; - - for ($j = 1; $j <= $n; $j++) { - if ($p[$j - 1] == '*') { - $dp[0][$j] = $dp[0][$j - 2]; + $dfs = function ($i, $j) use (&$s, &$p, $m, $n, &$f, &$dfs) { + if ($j >= $n) { + return $i == $m; } - } - - for ($i = 1; $i <= $m; $i++) { - for ($j = 1; $j <= $n; $j++) { - if ($p[$j - 1] == '.' || $p[$j - 1] == $s[$i - 1]) { - $dp[$i][$j] = $dp[$i - 1][$j - 1]; - } elseif ($p[$j - 1] == '*') { - $dp[$i][$j] = $dp[$i][$j - 2]; - if ($p[$j - 2] == '.' || $p[$j - 2] == $s[$i - 1]) { - $dp[$i][$j] = $dp[$i][$j] || $dp[$i - 1][$j]; - } - } else { - $dp[$i][$j] = false; + if ($f[$i][$j] != 0) { + return $f[$i][$j] == 1; + } + $res = -1; + if ($j + 1 < $n && $p[$j + 1] == '*') { + if ( + $dfs($i, $j + 2) || + ($i < $m && ($s[$i] == $p[$j] || $p[$j] == '.') && $dfs($i + 1, $j)) + ) { + $res = 1; } + } elseif ($i < $m && ($s[$i] == $p[$j] || $p[$j] == '.') && $dfs($i + 1, $j + 1)) { + $res = 1; } - } + $f[$i][$j] = $res; + return $res == 1; + }; - return $dp[$m][$n]; + return $dfs(0, 0); } -} +} \ No newline at end of file diff --git a/solution/0000-0099/0010.Regular Expression Matching/Solution2.c b/solution/0000-0099/0010.Regular Expression Matching/Solution2.c new file mode 100644 index 0000000000000..9240063d8bd6a --- /dev/null +++ b/solution/0000-0099/0010.Regular Expression Matching/Solution2.c @@ -0,0 +1,20 @@ +bool isMatch(char* s, char* p) { + int m = strlen(s), n = strlen(p); + bool f[m + 1][n + 1]; + memset(f, 0, sizeof(f)); + f[0][0] = true; + + for (int i = 0; i <= m; ++i) { + for (int j = 1; j <= n; ++j) { + if (p[j - 1] == '*') { + f[i][j] = f[i][j - 2]; + if (i > 0 && (p[j - 2] == '.' || p[j - 2] == s[i - 1])) { + f[i][j] = f[i][j] || f[i - 1][j]; + } + } else if (i > 0 && (p[j - 1] == '.' || p[j - 1] == s[i - 1])) { + f[i][j] = f[i - 1][j - 1]; + } + } + } + return f[m][n]; +} diff --git a/solution/0000-0099/0010.Regular Expression Matching/Solution2.php b/solution/0000-0099/0010.Regular Expression Matching/Solution2.php new file mode 100644 index 0000000000000..6f40295f7f06c --- /dev/null +++ b/solution/0000-0099/0010.Regular Expression Matching/Solution2.php @@ -0,0 +1,29 @@ +class Solution { + /** + * @param String $s + * @param String $p + * @return Boolean + */ + function isMatch($s, $p) { + $m = strlen($s); + $n = strlen($p); + + $f = array_fill(0, $m + 1, array_fill(0, $n + 1, false)); + $f[0][0] = true; + + for ($i = 0; $i <= $m; $i++) { + for ($j = 1; $j <= $n; $j++) { + if ($p[$j - 1] == '*') { + $f[$i][$j] = $f[$i][$j - 2]; + if ($i > 0 && ($p[$j - 2] == '.' || $p[$j - 2] == $s[$i - 1])) { + $f[$i][$j] = $f[$i][$j] || $f[$i - 1][$j]; + } + } elseif ($i > 0 && ($p[$j - 1] == '.' || $p[$j - 1] == $s[$i - 1])) { + $f[$i][$j] = $f[$i - 1][$j - 1]; + } + } + } + + return $f[$m][$n]; + } +} \ No newline at end of file diff --git a/solution/0000-0099/0011.Container With Most Water/README.md b/solution/0000-0099/0011.Container With Most Water/README.md index 1a3de695501d6..70c5128220e2c 100644 --- a/solution/0000-0099/0011.Container With Most Water/README.md +++ b/solution/0000-0099/0011.Container With Most Water/README.md @@ -262,6 +262,33 @@ class Solution { } ``` +#### C + +```c +int min(int a, int b) { + return a < b ? a : b; +} + +int max(int a, int b) { + return a > b ? a : b; +} + +int maxArea(int* height, int heightSize) { + int l = 0, r = heightSize - 1; + int ans = 0; + while (l < r) { + int t = min(height[l], height[r]) * (r - l); + ans = max(ans, t); + if (height[l] < height[r]) { + ++l; + } else { + --r; + } + } + return ans; +} +``` + diff --git a/solution/0000-0099/0011.Container With Most Water/README_EN.md b/solution/0000-0099/0011.Container With Most Water/README_EN.md index 5d113a38fbc66..0a0ab8c8f7108 100644 --- a/solution/0000-0099/0011.Container With Most Water/README_EN.md +++ b/solution/0000-0099/0011.Container With Most Water/README_EN.md @@ -259,6 +259,33 @@ class Solution { } ``` +#### C + +```c +int min(int a, int b) { + return a < b ? a : b; +} + +int max(int a, int b) { + return a > b ? a : b; +} + +int maxArea(int* height, int heightSize) { + int l = 0, r = heightSize - 1; + int ans = 0; + while (l < r) { + int t = min(height[l], height[r]) * (r - l); + ans = max(ans, t); + if (height[l] < height[r]) { + ++l; + } else { + --r; + } + } + return ans; +} +``` + diff --git a/solution/0000-0099/0011.Container With Most Water/Solution.c b/solution/0000-0099/0011.Container With Most Water/Solution.c new file mode 100644 index 0000000000000..a2dd45e5b194d --- /dev/null +++ b/solution/0000-0099/0011.Container With Most Water/Solution.c @@ -0,0 +1,22 @@ +int min(int a, int b) { + return a < b ? a : b; +} + +int max(int a, int b) { + return a > b ? a : b; +} + +int maxArea(int* height, int heightSize) { + int l = 0, r = heightSize - 1; + int ans = 0; + while (l < r) { + int t = min(height[l], height[r]) * (r - l); + ans = max(ans, t); + if (height[l] < height[r]) { + ++l; + } else { + --r; + } + } + return ans; +} diff --git a/solution/0000-0099/0012.Integer to Roman/README.md b/solution/0000-0099/0012.Integer to Roman/README.md index 815d37edba30b..c7151c82720b4 100644 --- a/solution/0000-0099/0012.Integer to Roman/README.md +++ b/solution/0000-0099/0012.Integer to Roman/README.md @@ -300,6 +300,30 @@ class Solution { } ``` +#### C + +```c +static const char* cs[] = { + "M", "CM", "D", "CD", "C", "XC", + "L", "XL", "X", "IX", "V", "IV", "I"}; + +static const int vs[] = { + 1000, 900, 500, 400, 100, 90, + 50, 40, 10, 9, 5, 4, 1}; + +char* intToRoman(int num) { + static char ans[20]; + ans[0] = '\0'; + for (int i = 0; i < 13; ++i) { + while (num >= vs[i]) { + num -= vs[i]; + strcat(ans, cs[i]); + } + } + return ans; +} +``` + diff --git a/solution/0000-0099/0012.Integer to Roman/README_EN.md b/solution/0000-0099/0012.Integer to Roman/README_EN.md index c7b57f780c463..9fcb12b9a56d2 100644 --- a/solution/0000-0099/0012.Integer to Roman/README_EN.md +++ b/solution/0000-0099/0012.Integer to Roman/README_EN.md @@ -298,6 +298,30 @@ class Solution { } ``` +#### C + +```c +static const char* cs[] = { + "M", "CM", "D", "CD", "C", "XC", + "L", "XL", "X", "IX", "V", "IV", "I"}; + +static const int vs[] = { + 1000, 900, 500, 400, 100, 90, + 50, 40, 10, 9, 5, 4, 1}; + +char* intToRoman(int num) { + static char ans[20]; + ans[0] = '\0'; + for (int i = 0; i < 13; ++i) { + while (num >= vs[i]) { + num -= vs[i]; + strcat(ans, cs[i]); + } + } + return ans; +} +``` + diff --git a/solution/0000-0099/0012.Integer to Roman/Solution.c b/solution/0000-0099/0012.Integer to Roman/Solution.c new file mode 100644 index 0000000000000..1417b40e44318 --- /dev/null +++ b/solution/0000-0099/0012.Integer to Roman/Solution.c @@ -0,0 +1,19 @@ +static const char* cs[] = { + "M", "CM", "D", "CD", "C", "XC", + "L", "XL", "X", "IX", "V", "IV", "I"}; + +static const int vs[] = { + 1000, 900, 500, 400, 100, 90, + 50, 40, 10, 9, 5, 4, 1}; + +char* intToRoman(int num) { + static char ans[20]; + ans[0] = '\0'; + for (int i = 0; i < 13; ++i) { + while (num >= vs[i]) { + num -= vs[i]; + strcat(ans, cs[i]); + } + } + return ans; +} diff --git a/solution/0000-0099/0013.Roman to Integer/README.md b/solution/0000-0099/0013.Roman to Integer/README.md index 4d985955579f8..604ebaaf5c8e8 100644 --- a/solution/0000-0099/0013.Roman to Integer/README.md +++ b/solution/0000-0099/0013.Roman to Integer/README.md @@ -341,6 +341,32 @@ def roman_to_int(s) end ``` +#### C + +```c +int nums(char c) { + switch (c) { + case 'I': return 1; + case 'V': return 5; + case 'X': return 10; + case 'L': return 50; + case 'C': return 100; + case 'D': return 500; + case 'M': return 1000; + default: return 0; + } +} + +int romanToInt(char* s) { + int ans = nums(s[strlen(s) - 1]); + for (int i = 0; i < (int) strlen(s) - 1; ++i) { + int sign = nums(s[i]) < nums(s[i + 1]) ? -1 : 1; + ans += sign * nums(s[i]); + } + return ans; +} +``` + diff --git a/solution/0000-0099/0013.Roman to Integer/README_EN.md b/solution/0000-0099/0013.Roman to Integer/README_EN.md index 099ed325658a3..5d93d580a88f1 100644 --- a/solution/0000-0099/0013.Roman to Integer/README_EN.md +++ b/solution/0000-0099/0013.Roman to Integer/README_EN.md @@ -327,6 +327,32 @@ def roman_to_int(s) end ``` +#### C + +```c +int nums(char c) { + switch (c) { + case 'I': return 1; + case 'V': return 5; + case 'X': return 10; + case 'L': return 50; + case 'C': return 100; + case 'D': return 500; + case 'M': return 1000; + default: return 0; + } +} + +int romanToInt(char* s) { + int ans = nums(s[strlen(s) - 1]); + for (int i = 0; i < (int) strlen(s) - 1; ++i) { + int sign = nums(s[i]) < nums(s[i + 1]) ? -1 : 1; + ans += sign * nums(s[i]); + } + return ans; +} +``` + diff --git a/solution/0000-0099/0013.Roman to Integer/Solution.c b/solution/0000-0099/0013.Roman to Integer/Solution.c new file mode 100644 index 0000000000000..7e3199c1e1fa7 --- /dev/null +++ b/solution/0000-0099/0013.Roman to Integer/Solution.c @@ -0,0 +1,21 @@ +int nums(char c) { + switch (c) { + case 'I': return 1; + case 'V': return 5; + case 'X': return 10; + case 'L': return 50; + case 'C': return 100; + case 'D': return 500; + case 'M': return 1000; + default: return 0; + } +} + +int romanToInt(char* s) { + int ans = nums(s[strlen(s) - 1]); + for (int i = 0; i < (int) strlen(s) - 1; ++i) { + int sign = nums(s[i]) < nums(s[i + 1]) ? -1 : 1; + ans += sign * nums(s[i]); + } + return ans; +} diff --git a/solution/0000-0099/0014.Longest Common Prefix/README.md b/solution/0000-0099/0014.Longest Common Prefix/README.md index 5f3529f01eb2c..fceadc76296da 100644 --- a/solution/0000-0099/0014.Longest Common Prefix/README.md +++ b/solution/0000-0099/0014.Longest Common Prefix/README.md @@ -4,6 +4,7 @@ difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0000-0099/0014.Longest%20Common%20Prefix/README.md tags: - 字典树 + - 数组 - 字符串 --- @@ -251,6 +252,22 @@ def longest_common_prefix(strs) end ``` +#### C + +```c +char* longestCommonPrefix(char** strs, int strsSize) { + for (int i = 0; strs[0][i]; i++) { + for (int j = 1; j < strsSize; j++) { + if (strs[j][i] != strs[0][i]) { + strs[0][i] = '\0'; + return strs[0]; + } + } + } + return strs[0]; +} +``` + diff --git a/solution/0000-0099/0014.Longest Common Prefix/README_EN.md b/solution/0000-0099/0014.Longest Common Prefix/README_EN.md index 32b3183c65f1b..0002faebd0c27 100644 --- a/solution/0000-0099/0014.Longest Common Prefix/README_EN.md +++ b/solution/0000-0099/0014.Longest Common Prefix/README_EN.md @@ -4,6 +4,7 @@ difficulty: Easy edit_url: https://github.com/doocs/leetcode/edit/main/solution/0000-0099/0014.Longest%20Common%20Prefix/README_EN.md tags: - Trie + - Array - String --- @@ -250,6 +251,22 @@ def longest_common_prefix(strs) end ``` +#### C + +```c +char* longestCommonPrefix(char** strs, int strsSize) { + for (int i = 0; strs[0][i]; i++) { + for (int j = 1; j < strsSize; j++) { + if (strs[j][i] != strs[0][i]) { + strs[0][i] = '\0'; + return strs[0]; + } + } + } + return strs[0]; +} +``` + diff --git a/solution/0000-0099/0014.Longest Common Prefix/Solution.c b/solution/0000-0099/0014.Longest Common Prefix/Solution.c new file mode 100644 index 0000000000000..5302a586083f1 --- /dev/null +++ b/solution/0000-0099/0014.Longest Common Prefix/Solution.c @@ -0,0 +1,11 @@ +char* longestCommonPrefix(char** strs, int strsSize) { + for (int i = 0; strs[0][i]; i++) { + for (int j = 1; j < strsSize; j++) { + if (strs[j][i] != strs[0][i]) { + strs[0][i] = '\0'; + return strs[0]; + } + } + } + return strs[0]; +} diff --git a/solution/0000-0099/0015.3Sum/README.md b/solution/0000-0099/0015.3Sum/README.md index 97e493065a58f..d38db88f5d3b1 100644 --- a/solution/0000-0099/0015.3Sum/README.md +++ b/solution/0000-0099/0015.3Sum/README.md @@ -453,6 +453,54 @@ class Solution { } ``` +#### C + +```c +int cmp(const void* a, const void* b) { + return *(int*) a - *(int*) b; +} + +int** threeSum(int* nums, int numsSize, int* returnSize, int** returnColumnSizes) { + *returnSize = 0; + int cap = 1000; + int** ans = (int**) malloc(sizeof(int*) * cap); + *returnColumnSizes = (int*) malloc(sizeof(int) * cap); + + qsort(nums, numsSize, sizeof(int), cmp); + + for (int i = 0; i < numsSize - 2 && nums[i] <= 0; ++i) { + if (i > 0 && nums[i] == nums[i - 1]) continue; + int j = i + 1, k = numsSize - 1; + while (j < k) { + int sum = nums[i] + nums[j] + nums[k]; + if (sum < 0) { + ++j; + } else if (sum > 0) { + --k; + } else { + if (*returnSize >= cap) { + cap *= 2; + ans = (int**) realloc(ans, sizeof(int*) * cap); + *returnColumnSizes = (int*) realloc(*returnColumnSizes, sizeof(int) * cap); + } + ans[*returnSize] = (int*) malloc(sizeof(int) * 3); + ans[*returnSize][0] = nums[i]; + ans[*returnSize][1] = nums[j]; + ans[*returnSize][2] = nums[k]; + (*returnColumnSizes)[*returnSize] = 3; + (*returnSize)++; + + ++j; + --k; + while (j < k && nums[j] == nums[j - 1]) ++j; + while (j < k && nums[k] == nums[k + 1]) --k; + } + } + } + return ans; +} +``` + diff --git a/solution/0000-0099/0015.3Sum/README_EN.md b/solution/0000-0099/0015.3Sum/README_EN.md index 9f84f4eceb78f..800479adb0a06 100644 --- a/solution/0000-0099/0015.3Sum/README_EN.md +++ b/solution/0000-0099/0015.3Sum/README_EN.md @@ -449,6 +449,54 @@ class Solution { } ``` +#### C + +```c +int cmp(const void* a, const void* b) { + return *(int*) a - *(int*) b; +} + +int** threeSum(int* nums, int numsSize, int* returnSize, int** returnColumnSizes) { + *returnSize = 0; + int cap = 1000; + int** ans = (int**) malloc(sizeof(int*) * cap); + *returnColumnSizes = (int*) malloc(sizeof(int) * cap); + + qsort(nums, numsSize, sizeof(int), cmp); + + for (int i = 0; i < numsSize - 2 && nums[i] <= 0; ++i) { + if (i > 0 && nums[i] == nums[i - 1]) continue; + int j = i + 1, k = numsSize - 1; + while (j < k) { + int sum = nums[i] + nums[j] + nums[k]; + if (sum < 0) { + ++j; + } else if (sum > 0) { + --k; + } else { + if (*returnSize >= cap) { + cap *= 2; + ans = (int**) realloc(ans, sizeof(int*) * cap); + *returnColumnSizes = (int*) realloc(*returnColumnSizes, sizeof(int) * cap); + } + ans[*returnSize] = (int*) malloc(sizeof(int) * 3); + ans[*returnSize][0] = nums[i]; + ans[*returnSize][1] = nums[j]; + ans[*returnSize][2] = nums[k]; + (*returnColumnSizes)[*returnSize] = 3; + (*returnSize)++; + + ++j; + --k; + while (j < k && nums[j] == nums[j - 1]) ++j; + while (j < k && nums[k] == nums[k + 1]) --k; + } + } + } + return ans; +} +``` + diff --git a/solution/0000-0099/0015.3Sum/Solution.c b/solution/0000-0099/0015.3Sum/Solution.c new file mode 100644 index 0000000000000..cce897d4a81cd --- /dev/null +++ b/solution/0000-0099/0015.3Sum/Solution.c @@ -0,0 +1,43 @@ +int cmp(const void* a, const void* b) { + return *(int*) a - *(int*) b; +} + +int** threeSum(int* nums, int numsSize, int* returnSize, int** returnColumnSizes) { + *returnSize = 0; + int cap = 1000; + int** ans = (int**) malloc(sizeof(int*) * cap); + *returnColumnSizes = (int*) malloc(sizeof(int) * cap); + + qsort(nums, numsSize, sizeof(int), cmp); + + for (int i = 0; i < numsSize - 2 && nums[i] <= 0; ++i) { + if (i > 0 && nums[i] == nums[i - 1]) continue; + int j = i + 1, k = numsSize - 1; + while (j < k) { + int sum = nums[i] + nums[j] + nums[k]; + if (sum < 0) { + ++j; + } else if (sum > 0) { + --k; + } else { + if (*returnSize >= cap) { + cap *= 2; + ans = (int**) realloc(ans, sizeof(int*) * cap); + *returnColumnSizes = (int*) realloc(*returnColumnSizes, sizeof(int) * cap); + } + ans[*returnSize] = (int*) malloc(sizeof(int) * 3); + ans[*returnSize][0] = nums[i]; + ans[*returnSize][1] = nums[j]; + ans[*returnSize][2] = nums[k]; + (*returnColumnSizes)[*returnSize] = 3; + (*returnSize)++; + + ++j; + --k; + while (j < k && nums[j] == nums[j - 1]) ++j; + while (j < k && nums[k] == nums[k + 1]) --k; + } + } + } + return ans; +} diff --git a/solution/0000-0099/0016.3Sum Closest/README.md b/solution/0000-0099/0016.3Sum Closest/README.md index 406e23f70dbb9..c724790896aff 100644 --- a/solution/0000-0099/0016.3Sum Closest/README.md +++ b/solution/0000-0099/0016.3Sum Closest/README.md @@ -315,6 +315,37 @@ class Solution { } ``` +#### C + +```c +int cmp(const void* a, const void* b) { + return (*(int*) a - *(int*) b); +} + +int threeSumClosest(int* nums, int numsSize, int target) { + qsort(nums, numsSize, sizeof(int), cmp); + int ans = 1 << 30; + for (int i = 0; i < numsSize; ++i) { + int j = i + 1, k = numsSize - 1; + while (j < k) { + int t = nums[i] + nums[j] + nums[k]; + if (t == target) { + return t; + } + if (abs(t - target) < abs(ans - target)) { + ans = t; + } + if (t > target) { + --k; + } else { + ++j; + } + } + } + return ans; +} +``` + diff --git a/solution/0000-0099/0016.3Sum Closest/README_EN.md b/solution/0000-0099/0016.3Sum Closest/README_EN.md index b5ccdf0198cd0..3366410926aee 100644 --- a/solution/0000-0099/0016.3Sum Closest/README_EN.md +++ b/solution/0000-0099/0016.3Sum Closest/README_EN.md @@ -314,6 +314,37 @@ class Solution { } ``` +#### C + +```c +int cmp(const void* a, const void* b) { + return (*(int*) a - *(int*) b); +} + +int threeSumClosest(int* nums, int numsSize, int target) { + qsort(nums, numsSize, sizeof(int), cmp); + int ans = 1 << 30; + for (int i = 0; i < numsSize; ++i) { + int j = i + 1, k = numsSize - 1; + while (j < k) { + int t = nums[i] + nums[j] + nums[k]; + if (t == target) { + return t; + } + if (abs(t - target) < abs(ans - target)) { + ans = t; + } + if (t > target) { + --k; + } else { + ++j; + } + } + } + return ans; +} +``` + diff --git a/solution/0000-0099/0016.3Sum Closest/Solution.c b/solution/0000-0099/0016.3Sum Closest/Solution.c new file mode 100644 index 0000000000000..778c1a2aca594 --- /dev/null +++ b/solution/0000-0099/0016.3Sum Closest/Solution.c @@ -0,0 +1,26 @@ +int cmp(const void* a, const void* b) { + return (*(int*) a - *(int*) b); +} + +int threeSumClosest(int* nums, int numsSize, int target) { + qsort(nums, numsSize, sizeof(int), cmp); + int ans = 1 << 30; + for (int i = 0; i < numsSize; ++i) { + int j = i + 1, k = numsSize - 1; + while (j < k) { + int t = nums[i] + nums[j] + nums[k]; + if (t == target) { + return t; + } + if (abs(t - target) < abs(ans - target)) { + ans = t; + } + if (t > target) { + --k; + } else { + ++j; + } + } + } + return ans; +} diff --git a/solution/0000-0099/0017.Letter Combinations of a Phone Number/README.md b/solution/0000-0099/0017.Letter Combinations of a Phone Number/README.md index a8ca434436f2e..6f1223d12ac1f 100644 --- a/solution/0000-0099/0017.Letter Combinations of a Phone Number/README.md +++ b/solution/0000-0099/0017.Letter Combinations of a Phone Number/README.md @@ -22,7 +22,7 @@ tags:
给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。
-@@ -555,6 +555,48 @@ class Solution { } ``` +#### C + +```c +char* d[] = {"abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}; + +char** letterCombinations(char* digits, int* returnSize) { + if (!*digits) { + *returnSize = 0; + return NULL; + } + + int size = 1; + char** ans = (char**) malloc(sizeof(char*)); + ans[0] = strdup(""); + + for (int x = 0; digits[x]; ++x) { + char* s = d[digits[x] - '2']; + int len = strlen(s); + char** t = (char**) malloc(sizeof(char*) * size * len); + int tSize = 0; + + for (int i = 0; i < size; ++i) { + for (int j = 0; j < len; ++j) { + int oldLen = strlen(ans[i]); + char* tmp = (char*) malloc(oldLen + 2); + strcpy(tmp, ans[i]); + tmp[oldLen] = s[j]; + tmp[oldLen + 1] = '\0'; + t[tSize++] = tmp; + } + free(ans[i]); + } + free(ans); + ans = t; + size = tSize; + } + + *returnSize = size; + return ans; +} +``` + diff --git a/solution/0000-0099/0017.Letter Combinations of a Phone Number/README_EN.md b/solution/0000-0099/0017.Letter Combinations of a Phone Number/README_EN.md index ffad07737163e..dba840d7bd8ee 100644 --- a/solution/0000-0099/0017.Letter Combinations of a Phone Number/README_EN.md +++ b/solution/0000-0099/0017.Letter Combinations of a Phone Number/README_EN.md @@ -551,6 +551,48 @@ class Solution { } ``` +#### C + +```c +char* d[] = {"abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}; + +char** letterCombinations(char* digits, int* returnSize) { + if (!*digits) { + *returnSize = 0; + return NULL; + } + + int size = 1; + char** ans = (char**) malloc(sizeof(char*)); + ans[0] = strdup(""); + + for (int x = 0; digits[x]; ++x) { + char* s = d[digits[x] - '2']; + int len = strlen(s); + char** t = (char**) malloc(sizeof(char*) * size * len); + int tSize = 0; + + for (int i = 0; i < size; ++i) { + for (int j = 0; j < len; ++j) { + int oldLen = strlen(ans[i]); + char* tmp = (char*) malloc(oldLen + 2); + strcpy(tmp, ans[i]); + tmp[oldLen] = s[j]; + tmp[oldLen + 1] = '\0'; + t[tSize++] = tmp; + } + free(ans[i]); + } + free(ans); + ans = t; + size = tSize; + } + + *returnSize = size; + return ans; +} +``` + diff --git a/solution/0000-0099/0017.Letter Combinations of a Phone Number/Solution.c b/solution/0000-0099/0017.Letter Combinations of a Phone Number/Solution.c new file mode 100644 index 0000000000000..e02c971a3a8c6 --- /dev/null +++ b/solution/0000-0099/0017.Letter Combinations of a Phone Number/Solution.c @@ -0,0 +1,37 @@ +char* d[] = {"abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}; + +char** letterCombinations(char* digits, int* returnSize) { + if (!*digits) { + *returnSize = 0; + return NULL; + } + + int size = 1; + char** ans = (char**) malloc(sizeof(char*)); + ans[0] = strdup(""); + + for (int x = 0; digits[x]; ++x) { + char* s = d[digits[x] - '2']; + int len = strlen(s); + char** t = (char**) malloc(sizeof(char*) * size * len); + int tSize = 0; + + for (int i = 0; i < size; ++i) { + for (int j = 0; j < len; ++j) { + int oldLen = strlen(ans[i]); + char* tmp = (char*) malloc(oldLen + 2); + strcpy(tmp, ans[i]); + tmp[oldLen] = s[j]; + tmp[oldLen + 1] = '\0'; + t[tSize++] = tmp; + } + free(ans[i]); + } + free(ans); + ans = t; + size = tSize; + } + + *returnSize = size; + return ans; +} diff --git a/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/1200px-telephone-keypad2svg.png b/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/1200px-telephone-keypad2svg.png new file mode 100644 index 0000000000000..cbf69ae96598d Binary files /dev/null and b/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/1200px-telephone-keypad2svg.png differ diff --git a/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/1752723054-mfIHZs-image.png b/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/1752723054-mfIHZs-image.png new file mode 100644 index 0000000000000..e4d9a76bfe05c Binary files /dev/null and b/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/1752723054-mfIHZs-image.png differ diff --git a/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/17_telephone_keypad.png b/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/17_telephone_keypad.png deleted file mode 100644 index ef7a0bffee3e2..0000000000000 Binary files a/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/17_telephone_keypad.png and /dev/null differ diff --git a/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/200px-Telephone-keypad2.svg.png b/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/200px-Telephone-keypad2.svg.png deleted file mode 100644 index 38764028d1835..0000000000000 Binary files a/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/200px-Telephone-keypad2.svg.png and /dev/null differ diff --git a/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/200px-telephone-keypad2svg.png b/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/200px-telephone-keypad2svg.png deleted file mode 100644 index 38764028d1835..0000000000000 Binary files a/solution/0000-0099/0017.Letter Combinations of a Phone Number/images/200px-telephone-keypad2svg.png and /dev/null differ diff --git a/solution/0000-0099/0020.Valid Parentheses/README.md b/solution/0000-0099/0020.Valid Parentheses/README.md index e4c364fe798a6..d09f9eda8a015 100644 --- a/solution/0000-0099/0020.Valid Parentheses/README.md +++ b/solution/0000-0099/0020.Valid Parentheses/README.md @@ -61,6 +61,14 @@ tags:
输出:true
+示例 5:
+ +输入:s = "([)]"
+ +输出:false
+
提示:
diff --git a/solution/0000-0099/0020.Valid Parentheses/README_EN.md b/solution/0000-0099/0020.Valid Parentheses/README_EN.md index cf0fc8a16deba..24c94a545cabb 100644 --- a/solution/0000-0099/0020.Valid Parentheses/README_EN.md +++ b/solution/0000-0099/0020.Valid Parentheses/README_EN.md @@ -60,6 +60,14 @@ tags:Output: true
+Example 5:
+ +Input: s = "([)]"
+ +Output: false
+
Constraints:
diff --git a/solution/0000-0099/0023.Merge k Sorted Lists/README_EN.md b/solution/0000-0099/0023.Merge k Sorted Lists/README_EN.md index e7e07e00330c5..787342715e2e0 100644 --- a/solution/0000-0099/0023.Merge k Sorted Lists/README_EN.md +++ b/solution/0000-0099/0023.Merge k Sorted Lists/README_EN.md @@ -35,7 +35,7 @@ tags: 1->3->4, 2->6 ] -merging them into one sorted list: +merging them into one sorted linked list: 1->1->2->3->4->4->5->6 diff --git a/solution/0000-0099/0032.Longest Valid Parentheses/README.md b/solution/0000-0099/0032.Longest Valid Parentheses/README.md index 41b8be83eb9e6..6e23e7719174d 100644 --- a/solution/0000-0099/0032.Longest Valid Parentheses/README.md +++ b/solution/0000-0099/0032.Longest Valid Parentheses/README.md @@ -18,7 +18,9 @@ tags: -给你一个只包含 '('
和 ')'
的字符串,找出最长有效(格式正确且连续)括号子串的长度。
给你一个只包含 '('
和 ')'
的字符串,找出最长有效(格式正确且连续)括号 子串 的长度。
左右括号匹配,即每个左括号都有对应的右括号将其闭合的字符串是格式正确的,比如 "(()())"
。
diff --git a/solution/0000-0099/0033.Search in Rotated Sorted Array/README.md b/solution/0000-0099/0033.Search in Rotated Sorted Array/README.md index d84ddc3e91a90..055329f700460 100644 --- a/solution/0000-0099/0033.Search in Rotated Sorted Array/README.md +++ b/solution/0000-0099/0033.Search in Rotated Sorted Array/README.md @@ -19,7 +19,7 @@ tags:
整数数组 nums
按升序排列,数组中的值 互不相同 。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7]
在下标 3
处经旋转后可能变为 [4,5,6,7,0,1,2]
。
在传递给函数之前,nums
在预先未知的某个下标 k
(0 <= k < nums.length
)上进行了 旋转,使数组变为 [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(下标 从 0 开始 计数)。例如, [0,1,2,4,5,6,7]
向左旋转 3
次后可能变为 [4,5,6,7,0,1,2]
。
给你 旋转后 的数组 nums
和一个整数 target
,如果 nums
中存在这个目标值 target
,则返回它的下标,否则返回 -1
。
There is an integer array nums
sorted in ascending order (with distinct values).
Prior to being passed to your function, nums
is possibly rotated at an unknown pivot index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be rotated at pivot index 3
and become [4,5,6,7,0,1,2]
.
Prior to being passed to your function, nums
is possibly left rotated at an unknown index k
(1 <= k < nums.length
) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]]
(0-indexed). For example, [0,1,2,4,5,6,7]
might be left rotated by 3
indices and become [4,5,6,7,0,1,2]
.
Given the array nums
after the possible rotation and an integer target
, return the index of target
if it is in nums
, or -1
if it is not in nums
.
给定一个长度为 n
的 0 索引整数数组 nums
。初始位置为 nums[0]
。
每个元素 nums[i]
表示从索引 i
向后跳转的最大长度。换句话说,如果你在 nums[i]
处,你可以跳转到任意 nums[i + j]
处:
每个元素 nums[i]
表示从索引 i
向后跳转的最大长度。换句话说,如果你在索引 i
处,你可以跳转到任意 (i + j)
处:
0 <= j <= nums[i]
0 <= j <= nums[i]
且i + j < n
返回到达 nums[n - 1]
的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]
。
返回到达 n - 1
的最小跳跃次数。测试用例保证可以到达 n - 1
。
@@ -54,7 +54,7 @@ tags:
1 <= nums.length <= 104
0 <= nums[i] <= 1000
nums[n-1]
n - 1
You are given a 0-indexed array of integers nums
of length n
. You are initially positioned at nums[0]
.
You are given a 0-indexed array of integers nums
of length n
. You are initially positioned at index 0.
Each element nums[i]
represents the maximum length of a forward jump from index i
. In other words, if you are at nums[i]
, you can jump to any nums[i + j]
where:
Each element nums[i]
represents the maximum length of a forward jump from index i
. In other words, if you are at index i
, you can jump to any index (i + j)
where:
0 <= j <= nums[i]
andi + j < n
Return the minimum number of jumps to reach nums[n - 1]
. The test cases are generated such that you can reach nums[n - 1]
.
Return the minimum number of jumps to reach index n - 1
. The test cases are generated such that you can reach index n - 1
.
Example 1:
diff --git a/solution/0000-0099/0049.Group Anagrams/README.md b/solution/0000-0099/0049.Group Anagrams/README.md index 404f965482ca4..20255463c7d4d 100644 --- a/solution/0000-0099/0049.Group Anagrams/README.md +++ b/solution/0000-0099/0049.Group Anagrams/README.md @@ -19,30 +19,41 @@ tags: -给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。
- -字母异位词 是由重新排列源单词的所有字母得到的一个新单词。
+给你一个字符串数组,请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。
示例 1:
-
-输入: strs = ["eat", "tea", "tan", "ate", "nat", "bat"]
-输出: [["bat"],["nat","tan"],["ate","eat","tea"]]
+输入: strs = ["eat", "tea", "tan", "ate", "nat", "bat"]
+ +输出: [["bat"],["nat","tan"],["ate","eat","tea"]]
+ +解释:
+ +"bat"
。"nat"
和 "tan"
是字母异位词,因为它们可以重新排列以形成彼此。"ate"
,"eat"
和 "tea"
是字母异位词,因为它们可以重新排列以形成彼此。示例 2:
-
-输入: strs = [""]
-输出: [[""]]
-
+输入: strs = [""]
+ +输出: [[""]]
+示例 3:
-
-输入: strs = ["a"]
-输出: [["a"]]
+输入: strs = ["a"]
+ +输出: [["a"]]
+diff --git a/solution/0000-0099/0066.Plus One/README.md b/solution/0000-0099/0066.Plus One/README.md index 6c48f063bb6d3..a63a22c802037 100644 --- a/solution/0000-0099/0066.Plus One/README.md +++ b/solution/0000-0099/0066.Plus One/README.md @@ -17,11 +17,9 @@ tags: -
给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。
+给定一个表示 大整数 的整数数组 digits
,其中 digits[i]
是整数的第 i
位数字。这些数字按从左到右,从最高位到最低位排列。这个大整数不包含任何前导 0
。
最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。
- -你可以假设除了整数 0 之外,这个整数不会以零开头。
+将大整数加 1,并返回结果的数字数组。
@@ -31,6 +29,8 @@ tags: 输入:digits = [1,2,3] 输出:[1,2,4] 解释:输入数组表示数字 123。 +加 1 后得到 123 + 1 = 124。 +因此,结果应该是 [1,2,4]。
示例 2:
@@ -39,6 +39,8 @@ tags: 输入:digits = [4,3,2,1] 输出:[4,3,2,2] 解释:输入数组表示数字 4321。 +加 1 后得到 4321 + 1 = 4322。 +因此,结果应该是 [4,3,2,2]。示例 3:
@@ -58,6 +60,7 @@ tags:1 <= digits.length <= 100
0 <= digits[i] <= 9
digits
不包含任何前导 0
。有效 二叉搜索树定义如下:
A valid BST is defined as follows:
1
个糖果。请你给每个孩子分发糖果,计算并返回需要准备的 最少糖果数目 。
diff --git a/solution/0100-0199/0190.Reverse Bits/README.md b/solution/0100-0199/0190.Reverse Bits/README.md index e151edf982a68..9bcaffac01ee3 100644 --- a/solution/0100-0199/0190.Reverse Bits/README.md +++ b/solution/0100-0199/0190.Reverse Bits/README.md @@ -23,33 +23,72 @@ tags:-3
,输出表示有符号整数 -1073741825
。-
示例 1:
- --输入:n = 00000010100101000001111010011100 -输出:964176192 (00111001011110000010100101000000) -解释:输入的二进制串 00000010100101000001111010011100 表示无符号整数 43261596, - 因此返回 964176192,其二进制表示形式为 00111001011110000010100101000000。- -
示例 2:
- --输入:n = 11111111111111111111111111111101 -输出:3221225471 (10111111111111111111111111111111) -解释:输入的二进制串 11111111111111111111111111111101 表示无符号整数 4294967293, - 因此返回 3221225471 其二进制表示形式为 10111111111111111111111111111111 。+
示例 1:
+ +输入:n = 43261596
+ +输出:964176192
+ +解释:
+ +整数 | +二进制 | +
---|---|
43261596 | +00000010100101000001111010011100 | +
964176192 | +00111001011110000010100101000000 | +
示例 2:
+ +输入:n = 2147483644
+ +输出:1073741822
+ +解释:
+ +整数 | +二进制 | +
---|---|
2147483644 | +01111111111111111111111111111100 | +
1073741822 | +00111111111111111111111111111110 | +
提示:
32
的二进制字符串0 <= n <= 231 - 2
n
为偶数diff --git a/solution/0100-0199/0190.Reverse Bits/README_EN.md b/solution/0100-0199/0190.Reverse Bits/README_EN.md index c9cb6f63778a4..9463a8ca49e00 100644 --- a/solution/0100-0199/0190.Reverse Bits/README_EN.md +++ b/solution/0100-0199/0190.Reverse Bits/README_EN.md @@ -23,31 +23,70 @@ tags:
-3
and the output represents the signed integer -1073741825
.
Example 1:
--Input: n = 00000010100101000001111010011100 -Output: 964176192 (00111001011110000010100101000000) -Explanation: The input binary string 00000010100101000001111010011100 represents the unsigned integer 43261596, so return 964176192 which its binary representation is 00111001011110000010100101000000. -+
Input: n = 43261596
+ +Output: 964176192
+ +Explanation:
+ +Integer | +Binary | +
---|---|
43261596 | +00000010100101000001111010011100 | +
964176192 | +00111001011110000010100101000000 | +
Example 2:
--Input: n = 11111111111111111111111111111101 -Output: 3221225471 (10111111111111111111111111111111) -Explanation: The input binary string 11111111111111111111111111111101 represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is 10111111111111111111111111111111. -+
Input: n = 2147483644
+ +Output: 1073741822
+ +Explanation:
+ +Integer | +Binary | +
---|---|
2147483644 | +01111111111111111111111111111100 | +
1073741822 | +00111111111111111111111111111110 | +
Constraints:
32
0 <= n <= 231 - 2
n
is even.diff --git a/solution/0100-0199/0195.Tenth Line/README_EN.md b/solution/0100-0199/0195.Tenth Line/README_EN.md index 7ca9f7187d210..69bdfb2395242 100644 --- a/solution/0100-0199/0195.Tenth Line/README_EN.md +++ b/solution/0100-0199/0195.Tenth Line/README_EN.md @@ -23,26 +23,41 @@ tags:
Assume that file.txt
has the following content:
+ Line 1 + Line 2 + Line 3 + Line 4 + Line 5 + Line 6 + Line 7 + Line 8 + Line 9 + Line 10 +
Your script should output the tenth line, which is:
+ Line 10 +
给定一个 无重复元素 的 有序 整数数组 nums
。
返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说,nums
的每个元素都恰好被某个区间范围所覆盖,并且不存在属于某个范围但不属于 nums
的数字 x
。
区间 [a,b]
是从 a
到 b
(包含)的所有整数的集合。
返回 恰好覆盖数组中所有数字 的 最小有序 区间范围列表 。也就是说,nums
的每个元素都恰好被某个区间范围所覆盖,并且不存在属于某个区间但不属于 nums
的数字 x
。
列表中的每个区间范围 [a,b]
应该按如下格式输出:
给定一个二叉树,统计该二叉树数值相同的子树个数。
+给定一个二叉树,统计该二叉树数值相同的 子树 个数。
同值子树是指该子树的所有节点都拥有相同的数值。
-示例:
++
示例 1:
+-输入: root = [5,1,5,5,5,null,5] +输入:root = [5,1,5,5,5,null,5] +输出:4 +- 5 - / \ - 1 5 - / \ \ - 5 5 5 +
示例 2:
-输出: 4 ++输入:root = [] +输出:0+
示例 3:
+ ++输入:root = [5,5,5,5,5,null,5] +输出:6 ++ +
+ +
提示:
+ +[0, 1000]
范围内-1000 <= Node.val <= 1000
给定一个仅包含数字 0-9
的字符串 num
和一个目标值整数 target
,在 num
的数字之间添加 二元 运算符(不是一元)+
、-
或 *
,返回 所有 能够得到 target
的表达式。
给定一个仅包含数字 0-9
的字符串 num
和一个目标值整数 target
,在 num
的数字之间添加 二元 运算符(不是一元)+
、-
或 *
,返回 所有 能够得到 target
的表达式。
注意,返回表达式中的操作数 不应该 包含前导零。
+注意,一个数字可以包含多个数位。
+
示例 1:
diff --git a/solution/0200-0299/0282.Expression Add Operators/README_EN.md b/solution/0200-0299/0282.Expression Add Operators/README_EN.md index 083949924e34b..7b0d14c5eba93 100644 --- a/solution/0200-0299/0282.Expression Add Operators/README_EN.md +++ b/solution/0200-0299/0282.Expression Add Operators/README_EN.md @@ -22,6 +22,8 @@ tags:Note that operands in the returned expressions should not contain leading zeros.
+Note that a number can contain multiple digits.
+
Example 1:
diff --git a/solution/0300-0399/0307.Range Sum Query - Mutable/README.md b/solution/0300-0399/0307.Range Sum Query - Mutable/README.md index 73f33a3388a62..03d184f9857ae 100644 --- a/solution/0300-0399/0307.Range Sum Query - Mutable/README.md +++ b/solution/0300-0399/0307.Range Sum Query - Mutable/README.md @@ -7,6 +7,7 @@ tags: - 树状数组 - 线段树 - 数组 + - 分治 --- diff --git a/solution/0300-0399/0307.Range Sum Query - Mutable/README_EN.md b/solution/0300-0399/0307.Range Sum Query - Mutable/README_EN.md index 380df451ebaaf..b9a6a0b062f3b 100644 --- a/solution/0300-0399/0307.Range Sum Query - Mutable/README_EN.md +++ b/solution/0300-0399/0307.Range Sum Query - Mutable/README_EN.md @@ -7,6 +7,7 @@ tags: - Binary Indexed Tree - Segment Tree - Array + - Divide and Conquer --- diff --git a/solution/0300-0399/0308.Range Sum Query 2D - Mutable/README.md b/solution/0300-0399/0308.Range Sum Query 2D - Mutable/README.md index 7beaa49386445..ce09eb5f47c0d 100644 --- a/solution/0300-0399/0308.Range Sum Query 2D - Mutable/README.md +++ b/solution/0300-0399/0308.Range Sum Query 2D - Mutable/README.md @@ -62,13 +62,13 @@ numMatrix.sumRegion(2, 1, 4, 3); // 返回 10 (即,右侧红色矩形的和)m == matrix.length
n == matrix[i].length
1 <= m, n <= 200
-105 <= matrix[i][j] <= 105
-1000 <= matrix[i][j] <= 1000
0 <= row < m
0 <= col < n
-105 <= val <= 105
-1000 <= val <= 1000
0 <= row1 <= row2 < m
0 <= col1 <= col2 < n
104
次 sumRegion
和 update
方法5000
次 sumRegion
和 update
方法给定单链表的头节点 head
,将所有索引为奇数的节点和索引为偶数的节点分别组合在一起,然后返回重新排序的列表。
给定单链表的头节点 head
,将所有索引为奇数的节点和索引为偶数的节点分别分组,保持它们原有的相对顺序,然后把偶数索引节点分组连接到奇数索引节点分组之后,返回重新排序的链表。
第一个节点的索引被认为是 奇数 , 第二个节点的索引为 偶数 ,以此类推。
diff --git a/solution/0300-0399/0348.Design Tic-Tac-Toe/README.md b/solution/0300-0399/0348.Design Tic-Tac-Toe/README.md index c3bdea5faf274..a9b134fb52acd 100644 --- a/solution/0300-0399/0348.Design Tic-Tac-Toe/README.md +++ b/solution/0300-0399/0348.Design Tic-Tac-Toe/README.md @@ -20,7 +20,7 @@ tags: -请在 n × n 的棋盘上,实现一个判定井字棋(Tic-Tac-Toe)胜负的神器,判断每一次玩家落子后,是否有胜出的玩家。
+请在 n × n 的棋盘上,实现一个判定井字棋(Tic-Tac-Toe)胜负的神器,判断每一次玩家落子后,是否有胜出的玩家。
在这个井字棋游戏中,会有 2 名玩家,他们将轮流在棋盘上放置自己的棋子。
@@ -34,7 +34,8 @@ tags:示例:
-给定棋盘边长 n = 3, 玩家 1 的棋子符号是 "X",玩家 2 的棋子符号是 "O"。 ++给定棋盘边长 n = 3, 玩家 1 的棋子符号是 "X",玩家 2 的棋子符号是 "O"。 TicTacToe toe = new TicTacToe(3); @@ -76,7 +77,17 @@ toe.move(2, 1, 1); -> 函数返回 1 (此时,玩家 1 赢得了该场比赛-
进阶:
+提示:
+ +
2 <= n <= 100
1
或 2
。0 <= row, col < n
move
时 (row, col)
都是不同的。move
n2
次。进阶:
您有没有可能将每一步的 move()
操作优化到比 O(n2) 更快吗?
此外,你可以认为原始数据不包含数字,所有的数字只表示重复的次数 k
,例如不会出现像 3a
或 2[4]
的输入。
测试用例保证输出的长度不会超过 105
。
示例 1:
diff --git a/solution/0400-0499/0405.Convert a Number to Hexadecimal/README.md b/solution/0400-0499/0405.Convert a Number to Hexadecimal/README.md index c7938f4dbc6e9..02ff376c891b7 100644 --- a/solution/0400-0499/0405.Convert a Number to Hexadecimal/README.md +++ b/solution/0400-0499/0405.Convert a Number to Hexadecimal/README.md @@ -5,6 +5,7 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/0400-0499/0405.Co tags: - 位运算 - 数学 + - 字符串 --- diff --git a/solution/0400-0499/0405.Convert a Number to Hexadecimal/README_EN.md b/solution/0400-0499/0405.Convert a Number to Hexadecimal/README_EN.md index d47e566ca8a25..97a155f1808e6 100644 --- a/solution/0400-0499/0405.Convert a Number to Hexadecimal/README_EN.md +++ b/solution/0400-0499/0405.Convert a Number to Hexadecimal/README_EN.md @@ -5,6 +5,7 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/0400-0499/0405.Co tags: - Bit Manipulation - Math + - String --- diff --git a/solution/0400-0499/0412.Fizz Buzz/README.md b/solution/0400-0499/0412.Fizz Buzz/README.md index e700c0a3089e9..19d4d3abe8a6c 100644 --- a/solution/0400-0499/0412.Fizz Buzz/README.md +++ b/solution/0400-0499/0412.Fizz Buzz/README.md @@ -18,7 +18,7 @@ tags: -给你一个整数 n
,找出从 1
到 n
各个整数的 Fizz Buzz 表示,并用字符串数组 answer
(下标从 1 开始)返回结果,其中:
给你一个整数 n
,返回一个字符串数组 answer
(下标从 1 开始),其中:
answer[i] == "FizzBuzz"
如果 i
同时是 3
和 5
的倍数。示例 3:
-输入:sentence = ["I", "had", "apple", "pie"], rows = 4, cols = 5 +输入:sentence = ["i", "had", "apple", "pie"], rows = 4, cols = 5 输出:1 解释: -I-had +i-had apple -pie-I +pie-i had-- 字符 '-' 表示屏幕上的一个空白位置。diff --git a/solution/0400-0499/0427.Construct Quad Tree/README.md b/solution/0400-0499/0427.Construct Quad Tree/README.md index 561c58bac14f4..7afa044e1460a 100644 --- a/solution/0400-0499/0427.Construct Quad Tree/README.md +++ b/solution/0400-0499/0427.Construct Quad Tree/README.md @@ -50,7 +50,7 @@ class Node {
如果你想了解更多关于四叉树的内容,可以参考 wiki 。
+如果你想了解更多关于四叉树的内容,可以参考 百科 。
四叉树格式:
diff --git a/solution/0400-0499/0472.Concatenated Words/README.md b/solution/0400-0499/0472.Concatenated Words/README.md index c487d2cb51c56..31954b9e6721f 100644 --- a/solution/0400-0499/0472.Concatenated Words/README.md +++ b/solution/0400-0499/0472.Concatenated Words/README.md @@ -8,6 +8,7 @@ tags: - 数组 - 字符串 - 动态规划 + - 排序 --- diff --git a/solution/0400-0499/0472.Concatenated Words/README_EN.md b/solution/0400-0499/0472.Concatenated Words/README_EN.md index 64039ca4901b3..5635be4155bb9 100644 --- a/solution/0400-0499/0472.Concatenated Words/README_EN.md +++ b/solution/0400-0499/0472.Concatenated Words/README_EN.md @@ -8,6 +8,7 @@ tags: - Array - String - Dynamic Programming + - Sorting --- diff --git a/solution/0400-0499/0475.Heaters/README_EN.md b/solution/0400-0499/0475.Heaters/README_EN.md index 518ecb9eb8201..8b63f1ef8dea6 100644 --- a/solution/0400-0499/0475.Heaters/README_EN.md +++ b/solution/0400-0499/0475.Heaters/README_EN.md @@ -25,7 +25,7 @@ tags:Given the positions of houses
and heaters
on a horizontal line, return the minimum radius standard of heaters so that those heaters could cover all houses.
Notice that all the heaters
follow your radius standard, and the warm radius will the same.
Notice that all the heaters
follow your radius standard, and the warm radius will be the same.
Example 1:
diff --git a/solution/0400-0499/0499.The Maze III/README.md b/solution/0400-0499/0499.The Maze III/README.md index 65546e7027af0..8b82449612cf2 100644 --- a/solution/0400-0499/0499.The Maze III/README.md +++ b/solution/0400-0499/0499.The Maze III/README.md @@ -23,9 +23,9 @@ tags: -由空地和墙组成的迷宫中有一个球。球可以向上(u)下(d)左(l)右(r)四个方向滚动,但在遇到墙壁前不会停止滚动。当球停下时,可以选择下一个方向。迷宫中还有一个洞,当球运动经过洞时,就会掉进洞里。
+由空地和墙组成的迷宫中有一个球。球可以向上(u)下(d)左(l)右(r)四个方向滚动,但在遇到墙壁前不会停止滚动。当球停下时,可以选择下一个方向(必须与上一个选择的方向不同)。迷宫中还有一个洞,当球运动经过洞时,就会掉进洞里。
-给定球的起始位置,目的地和迷宫,找出让球以最短距离掉进洞里的路径。 距离的定义是球从起始位置(不包括)到目的地(包括)经过的空地个数。通过'u', 'd', 'l' 和 'r'输出球的移动方向。 由于可能有多条最短路径, 请输出字典序最小的路径。如果球无法进入洞,输出"impossible"。
+给定球的起始位置,目的地和迷宫,找出让球以最短距离掉进洞里的路径。 距离的定义是球从起始位置(不包括)到目的地(包括)经过的空地个数。通过'u', 'd', 'l' 和 'r'输出球的移动方向。 由于可能有多条最短路径, 请输出字典序最小的路径。如果球无法进入洞,输出"impossible"。
迷宫由一个0和1的二维数组表示。 1表示墙壁,0表示空地。你可以假定迷宫的边缘都是墙壁。起始位置和目的地的坐标通过行号和列号给出。
@@ -33,7 +33,8 @@ tags:示例1:
-输入 1: 迷宫由以下二维数组表示 ++输入 1: 迷宫由以下二维数组表示 0 0 0 0 0 1 1 0 0 1 @@ -44,18 +45,19 @@ tags: 输入 2: 球的初始位置 (rowBall, colBall) = (4, 3) 输入 3: 洞的位置 (rowHole, colHole) = (0, 1) -输出: "lul" +输出: "lul" 解析: 有两条让球进洞的最短路径。 -第一条路径是 左 -> 上 -> 左, 记为 "lul". -第二条路径是 上 -> 左, 记为 'ul'. -两条路径都具有最短距离6, 但'l' < 'u',故第一条路径字典序更小。因此输出"lul"。 -+第一条路径是 左 -> 上 -> 左, 记为 "lul". +第二条路径是 上 -> 左, 记为 'ul'. +两条路径都具有最短距离6, 但'l' < 'u',故第一条路径字典序更小。因此输出"lul"。 +
![]()
示例 2:
-输入 1: 迷宫由以下二维数组表示 ++输入 1: 迷宫由以下二维数组表示 0 0 0 0 0 1 1 0 0 1 @@ -66,10 +68,10 @@ tags: 输入 2: 球的初始位置 (rowBall, colBall) = (4, 3) 输入 3: 洞的位置 (rowHole, colHole) = (3, 0) -输出: "impossible" +输出: "impossible" 示例: 球无法到达洞。 -+
![]()
diff --git a/solution/0400-0499/0499.The Maze III/README_EN.md b/solution/0400-0499/0499.The Maze III/README_EN.md index b1f7423cdc14e..44d79709ee175 100644 --- a/solution/0400-0499/0499.The Maze III/README_EN.md +++ b/solution/0400-0499/0499.The Maze III/README_EN.md @@ -23,7 +23,7 @@ tags: -
There is a ball in a
+maze
with empty spaces (represented as0
) and walls (represented as1
). The ball can go through the empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction. There is also a hole in this maze. The ball will drop into the hole if it rolls onto the hole.There is a ball in a
maze
with empty spaces (represented as0
) and walls (represented as1
). The ball can go through the empty spaces by rolling up, down, left or right, but it won't stop rolling until hitting a wall. When the ball stops, it could choose the next direction (must be different from last chosen direction). There is also a hole in this maze. The ball will drop into the hole if it rolls onto the hole.Given the
diff --git a/solution/0500-0599/0504.Base 7/README.md b/solution/0500-0599/0504.Base 7/README.md index 1e955a5f67ddb..4777530cac658 100644 --- a/solution/0500-0599/0504.Base 7/README.md +++ b/solution/0500-0599/0504.Base 7/README.md @@ -4,6 +4,7 @@ difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0500-0599/0504.Base%207/README.md tags: - 数学 + - 字符串 --- diff --git a/solution/0500-0599/0504.Base 7/README_EN.md b/solution/0500-0599/0504.Base 7/README_EN.md index c769e0816a5eb..20c58cdef8dff 100644 --- a/solution/0500-0599/0504.Base 7/README_EN.md +++ b/solution/0500-0599/0504.Base 7/README_EN.md @@ -4,6 +4,7 @@ difficulty: Easy edit_url: https://github.com/doocs/leetcode/edit/main/solution/0500-0599/0504.Base%207/README_EN.md tags: - Math + - String --- diff --git a/solution/0500-0599/0506.Relative Ranks/README.md b/solution/0500-0599/0506.Relative Ranks/README.md index 2f1fa1b09f81b..8dc348d38fa3e 100644 --- a/solution/0500-0599/0506.Relative Ranks/README.md +++ b/solution/0500-0599/0506.Relative Ranks/README.md @@ -97,9 +97,7 @@ class Solution { public String[] findRelativeRanks(int[] score) { int n = score.length; Integer[] idx = new Integer[n]; - for (int i = 0; i < n; ++i) { - idx[i] = i; - } + Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i1, i2) -> score[i2] - score[i1]); String[] ans = new String[n]; String[] top3 = new String[] {"Gold Medal", "Silver Medal", "Bronze Medal"}; diff --git a/solution/0500-0599/0506.Relative Ranks/README_EN.md b/solution/0500-0599/0506.Relative Ranks/README_EN.md index 8bb99b92b780c..7abeba13e8be4 100644 --- a/solution/0500-0599/0506.Relative Ranks/README_EN.md +++ b/solution/0500-0599/0506.Relative Ranks/README_EN.md @@ -96,9 +96,7 @@ class Solution { public String[] findRelativeRanks(int[] score) { int n = score.length; Integer[] idx = new Integer[n]; - for (int i = 0; i < n; ++i) { - idx[i] = i; - } + Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i1, i2) -> score[i2] - score[i1]); String[] ans = new String[n]; String[] top3 = new String[] {"Gold Medal", "Silver Medal", "Bronze Medal"}; diff --git a/solution/0500-0599/0506.Relative Ranks/Solution.java b/solution/0500-0599/0506.Relative Ranks/Solution.java index 700c854e36bcb..a855b14e5cb57 100644 --- a/solution/0500-0599/0506.Relative Ranks/Solution.java +++ b/solution/0500-0599/0506.Relative Ranks/Solution.java @@ -2,9 +2,7 @@ class Solution { public String[] findRelativeRanks(int[] score) { int n = score.length; Integer[] idx = new Integer[n]; - for (int i = 0; i < n; ++i) { - idx[i] = i; - } + Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i1, i2) -> score[i2] - score[i1]); String[] ans = new String[n]; String[] top3 = new String[] {"Gold Medal", "Silver Medal", "Bronze Medal"}; diff --git a/solution/0500-0599/0520.Detect Capital/README.md b/solution/0500-0599/0520.Detect Capital/README.md index b97c875d43010..ecb68de064c73 100644 --- a/solution/0500-0599/0520.Detect Capital/README.md +++ b/solution/0500-0599/0520.Detect Capital/README.md @@ -20,8 +20,8 @@ tags:m x n
maze
, the ball's positionball
and the hole's positionhole
, whereball = [ballrow, ballcol]
andhole = [holerow, holecol]
, return a stringinstructions
of all the instructions that the ball should follow to drop in the hole with the shortest distance possible. If there are multiple valid instructions, return the lexicographically minimum one. If the ball can't drop in the hole, return"impossible"
.
"USA"
。"leetcode"
。"Google"
。"leetcode"
。"Google"
。给你一个字符串 word
。如果大写用法正确,返回 true
;否则,返回 false
。
提示:
n == 2x
,并且 x
在范围 [1,12]
内。n == 2x
,并且 x
在范围 [1, 12]
内。- -
编写解决方案,报告在首次登录的第二天再次登录的玩家的 比率,四舍五入到小数点后两位。换句话说,你需要计算从首次登录日期开始至少连续两天登录的玩家的数量,然后除以玩家总数。
+编写解决方案,报告在首次登录的第二天再次登录的玩家的 比率,四舍五入到小数点后两位。换句话说,你需要计算从首次登录后的第二天登录的玩家数量,并将其除以总玩家数。
结果格式如下所示:
diff --git a/solution/0500-0599/0550.Game Play Analysis IV/README_EN.md b/solution/0500-0599/0550.Game Play Analysis IV/README_EN.md index 75774152565b6..3612f647d84ed 100644 --- a/solution/0500-0599/0550.Game Play Analysis IV/README_EN.md +++ b/solution/0500-0599/0550.Game Play Analysis IV/README_EN.md @@ -32,11 +32,11 @@ This table shows the activity of players of some games. Each row is a record of a player who logged in and played a number of games (possibly 0) before logging out on someday using some device. -+
-
Write a solution to report the fraction of players that logged in again on the day after the day they first logged in, rounded to 2 decimal places. In other words, you need to count the number of players that logged in for at least two consecutive days starting from their first login date, then divide that number by the total number of players.
+Write a solution to report the fraction of players that logged in again on the day after the day they first logged in, rounded to 2 decimal places. In other words, you need to determine the number of players who logged in on the day immediately following their initial login, and divide it by the number of total players.
-The result format is in the following example.
+The result format is in the following example.
Example 1:
diff --git a/solution/0500-0599/0584.Find Customer Referee/README.md b/solution/0500-0599/0584.Find Customer Referee/README.md index 5c2a099a2d835..fa63febcea511 100644 --- a/solution/0500-0599/0584.Find Customer Referee/README.md +++ b/solution/0500-0599/0584.Find Customer Referee/README.md @@ -29,7 +29,12 @@ tags: 在 SQL 中,id 是该表的主键列。 该表的每一行表示一个客户的 id、姓名以及推荐他们的客户的 id。 -找出那些 没有被 id = 2
的客户 推荐 的客户的姓名。
找出以下客户的姓名:
+ +id != 2
的用户推荐。以 任意顺序 返回结果表。
diff --git a/solution/0500-0599/0584.Find Customer Referee/README_EN.md b/solution/0500-0599/0584.Find Customer Referee/README_EN.md index d6810684bb34e..0bd8a5c948aff 100644 --- a/solution/0500-0599/0584.Find Customer Referee/README_EN.md +++ b/solution/0500-0599/0584.Find Customer Referee/README_EN.md @@ -32,7 +32,12 @@ Each row of this table indicates the id of a customer, their name, and the id of-
Find the names of the customer that are not referred by the customer with id = 2
.
Find the names of the customer that are either:
+ +id != 2
.Return the result table in any order.
diff --git a/solution/0500-0599/0594.Longest Harmonious Subsequence/README.md b/solution/0500-0599/0594.Longest Harmonious Subsequence/README.md index 06b75b6a92e88..faf66f120bb69 100644 --- a/solution/0500-0599/0594.Longest Harmonious Subsequence/README.md +++ b/solution/0500-0599/0594.Longest Harmonious Subsequence/README.md @@ -174,6 +174,28 @@ function findLHS(nums: number[]): number { } ``` +#### Rust + +```rust +use std::collections::HashMap; + +impl Solution { + pub fn find_lhs(nums: Vec树可以看成是一个连通且 无环 的 无向 图。
-给定往一棵 n
个节点 (节点值 1~n
) 的树中添加一条边后的图。添加的边的两个顶点包含在 1
到 n
中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n
的二维数组 edges
,edges[i] = [ai, bi]
表示图中在 ai
和 bi
之间存在一条边。
给定一个图,该图从一棵 n
个节点 (节点值 1~n
) 的树中添加一条边后获得。添加的边的两个不同顶点编号在 1
到 n
中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n
的二维数组 edges
,edges[i] = [ai, bi]
表示图中在 ai
和 bi
之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n
个节点的树。如果有多个答案,则返回数组 edges
中最后出现的那个。
示例 2:
diff --git a/solution/0600-0699/0689.Maximum Sum of 3 Non-Overlapping Subarrays/README_EN.md b/solution/0600-0699/0689.Maximum Sum of 3 Non-Overlapping Subarrays/README_EN.md index 8ad31e5c684f3..3d1fb0e0c7da3 100644 --- a/solution/0600-0699/0689.Maximum Sum of 3 Non-Overlapping Subarrays/README_EN.md +++ b/solution/0600-0699/0689.Maximum Sum of 3 Non-Overlapping Subarrays/README_EN.md @@ -30,7 +30,7 @@ tags: Input: nums = [1,2,1,2,6,7,5,1], k = 2 Output: [0,3,5] Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5]. -We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically smaller. +We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.Example 2:
diff --git a/solution/0700-0799/0704.Binary Search/README.md b/solution/0700-0799/0704.Binary Search/README.md index 293c01438e03b..e58c3aed1d10e 100644 --- a/solution/0700-0799/0704.Binary Search/README.md +++ b/solution/0700-0799/0704.Binary Search/README.md @@ -17,19 +17,23 @@ tags: -给定一个 n
个元素有序的(升序)整型数组 nums
和一个目标值 target
,写一个函数搜索 nums
中的 target
,如果目标值存在返回下标,否则返回 -1
。
给定一个 n
个元素有序的(升序)整型数组 nums
和一个目标值 target
,写一个函数搜索 nums
中的 target
,如果 target
存在返回下标,否则返回 -1
。
+
你必须编写一个具有 O(log n)
时间复杂度的算法。
示例 1:
输入:nums
= [-1,0,3,5,9,12],target
= 9 ++输入:nums
= [-1,0,3,5,9,12],target
= 9 输出: 4 解释: 9 出现在nums
中并且下标为 4示例 2:
-输入:nums
= [-1,0,3,5,9,12],target
= 2 ++输入:diff --git a/solution/0700-0799/0720.Longest Word in Dictionary/README.md b/solution/0700-0799/0720.Longest Word in Dictionary/README.md index bf15fcb915ab3..3a80e81888f9e 100644 --- a/solution/0700-0799/0720.Longest Word in Dictionary/README.md +++ b/solution/0700-0799/0720.Longest Word in Dictionary/README.md @@ -20,7 +20,7 @@ tags: -nums
= [-1,0,3,5,9,12],target
= 2 输出: -1 解释: 2 不存在nums
中因此返回 -1给出一个字符串数组
+words
组成的一本英语词典。返回words
中最长的一个单词,该单词是由words
词典中其他单词逐步添加一个字母组成。给出一个字符串数组
words
组成的一本英语词典。返回能够通过words
中其它单词逐步添加一个字母来构造得到的words
中最长的单词。若其中有多个可行的答案,则返回答案中字典序最小的单词。若无答案,则返回空字符串。
diff --git a/solution/0700-0799/0778.Swim in Rising Water/README_EN.md b/solution/0700-0799/0778.Swim in Rising Water/README_EN.md index 8212558afeb12..6f71d19110991 100644 --- a/solution/0700-0799/0778.Swim in Rising Water/README_EN.md +++ b/solution/0700-0799/0778.Swim in Rising Water/README_EN.md @@ -24,9 +24,11 @@ tags:You are given an
-n x n
integer matrixgrid
where each valuegrid[i][j]
represents the elevation at that point(i, j)
.The rain starts to fall. At time
+t
, the depth of the water everywhere ist
. You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at mostt
. You can swim infinite distances in zero time. Of course, you must stay within the boundaries of the grid during your swim.It starts raining, and water gradually rises over time. At time
-t
, the water level ist
, meaning any cell with elevation less than equal tot
is submerged or reachable.Return the least time until you can reach the bottom right square
+(n - 1, n - 1)
if you start at the top left square(0, 0)
.You can swim from a square to another 4-directionally adjacent square if and only if the elevation of both squares individually are at most
+ +t
. You can swim infinite distances in zero time. Of course, you must stay within the boundaries of the grid during your swim.Return the minimum time until you can reach the bottom right square
(n - 1, n - 1)
if you start at the top left square(0, 0)
.
Example 1:
diff --git a/solution/0700-0799/0797.All Paths From Source to Target/README.md b/solution/0700-0799/0797.All Paths From Source to Target/README.md index 4deb1aa603807..1d36139c345de 100644 --- a/solution/0700-0799/0797.All Paths From Source to Target/README.md +++ b/solution/0700-0799/0797.All Paths From Source to Target/README.md @@ -19,7 +19,7 @@ tags: -给你一个有
+n
个节点的 有向无环图(DAG),请你找出所有从节点0
到节点n-1
的路径并输出(不要求按特定顺序)给你一个有
n
个节点的 有向无环图(DAG),请你找出从节点0
到节点n-1
的所有路径并输出(不要求按特定顺序)diff --git a/solution/0700-0799/0799.Champagne Tower/README_EN.md b/solution/0700-0799/0799.Champagne Tower/README_EN.md index 7c1df1e554754..c04fa21334900 100644 --- a/solution/0700-0799/0799.Champagne Tower/README_EN.md +++ b/solution/0700-0799/0799.Champagne Tower/README_EN.md @@ -27,35 +27,51 @@ tags:
graph[i]
是一个从节点i
可以访问的所有节点的列表(即从节点i
到节点graph[i][j]
存在一条有向边)。Now after pouring some non-negative integer cups of champagne, return how full the
jth
glass in theith
row is (bothi
andj
are 0-indexed.)+
Example 1:
+ Input: poured = 1, query_row = 1, query_glass = 1 + Output: 0.00000 + Explanation: We poured 1 cup of champange to the top glass of the tower (which is indexed as (0, 0)). There will be no excess liquid so all the glasses under the top glass will remain empty. +Example 2:
+ Input: poured = 2, query_row = 1, query_glass = 1 + Output: 0.50000 + Explanation: We poured 2 cups of champange to the top glass of the tower (which is indexed as (0, 0)). There is one cup of excess liquid. The glass indexed as (1, 0) and the glass indexed as (1, 1) will share the excess liquid equally, and each will get half cup of champange. +Example 3:
+ Input: poured = 100000009, query_row = 33, query_glass = 17 + Output: 1.00000 ++
Constraints:
0 <= poured <= 109
0 <= query_glass <= query_row < 100
0 <= poured <= 109
0 <= query_glass <= query_row < 100
有一个有 n
个节点的有向图,节点按 0
到 n - 1
编号。图由一个 索引从 0 开始 的 2D 整数数组 graph
表示, graph[i]
是与节点 i
相邻的节点的整数数组,这意味着从节点 i
到 graph[i]
中的每个节点都有一条边。
如果一个节点没有连出的有向边,则该节点是 终端节点 。如果从该节点开始的所有可能路径都通向 终端节点 ,则该节点为 终端节点(或另一个安全节点)。
+如果一个节点没有连出的有向边,则该节点是 终端节点 。如果从该节点开始的所有可能路径都通向 终端节点(或另一个安全节点),则该节点为 安全节点。
返回一个由图中所有 安全节点 组成的数组作为答案。答案数组中的元素应当按 升序 排列。
diff --git a/solution/0800-0899/0808.Soup Servings/README.md b/solution/0800-0899/0808.Soup Servings/README.md index d6a4fb0c35681..598b2d354b358 100644 --- a/solution/0800-0899/0808.Soup Servings/README.md +++ b/solution/0800-0899/0808.Soup Servings/README.md @@ -18,29 +18,36 @@ tags: -有 A 和 B 两种类型 的汤。一开始每种类型的汤有 n
毫升。有四种分配操作:
你有两种汤,A 和 B,每种初始为 n
毫升。在每一轮中,会随机选择以下四种操作中的一种,每种操作的概率为 0.25
,且与之前的所有轮次 无关:
100ml
的 汤A 和 0ml
的 汤B 。75ml
的 汤A 和 25ml
的 汤B 。50ml
的 汤A 和 50ml
的 汤B 。25ml
的 汤A 和 75ml
的 汤B 。当我们把汤分配给某人之后,汤就没有了。每个回合,我们将从四种概率同为 0.25
的操作中进行分配选择。如果汤的剩余量不足以完成某次操作,我们将尽可能分配。当两种类型的汤都分配完时,停止操作。
注意:
-注意 不存在先分配 100
ml 汤B 的操作。
0
ml 和从汤 B 取 100
ml 的操作。操作过程在任何回合中任一汤被取完后立即停止。
-需要返回的值: 汤A 先分配完的概率 + 汤A和汤B 同时分配完的概率 / 2。返回值在正确答案 10-5
的范围内将被认为是正确的。
返回汤 A 在 B 前取完的概率,加上两种汤在 同一回合 取完概率的一半。返回值在正确答案 10-5
的范围内将被认为是正确的。
示例 1:
-输入: n = 50 -输出: 0.62500 -解释:如果我们选择前两个操作,A 首先将变为空。 +输入:n = 50 +输出:0.62500 +解释: +如果我们选择前两个操作,A 首先将变为空。 对于第三个操作,A 和 B 会同时变为空。 对于第四个操作,B 首先将变为空。 所以 A 变为空的总概率加上 A 和 B 同时变为空的概率的一半是 0.25 *(1 + 1 + 0.5 + 0)= 0.625。 @@ -49,8 +56,14 @@ tags:示例 2:
-输入: n = 100 -输出: 0.71875 +输入:n = 100 +输出:0.71875 +解释: +如果我们选择第一个操作,A 首先将变为空。 +如果我们选择第二个操作,A 将在执行操作 [1, 2, 3] 时变为空,然后 A 和 B 在执行操作 4 时同时变空。 +如果我们选择第三个操作,A 将在执行操作 [1, 2] 时变为空,然后 A 和 B 在执行操作 3 时同时变空。 +如果我们选择第四个操作,A 将在执行操作 1 时变为空,然后 A 和 B 在执行操作 2 时同时变空。 +所以 A 变为空的总概率加上 A 和 B 同时变为空的概率的一半是 0.71875。@@ -58,7 +71,7 @@ tags:
提示:
0 <= n <= 109
0 <= n <= 109
There are two types of soup: type A and type B. Initially, we have n
ml of each type of soup. There are four kinds of operations:
You have two soups, A and B, each starting with n
mL. On every turn, one of the following four serving operations is chosen at random, each with probability 0.25
independent of all previous turns:
100
ml of soup A and 0
ml of soup B,75
ml of soup A and 25
ml of soup B,50
ml of soup A and 50
ml of soup B, and25
ml of soup A and 75
ml of soup B.Note:
-When we serve some soup, we give it to someone, and we no longer have it. Each turn, we will choose from the four operations with an equal probability 0.25
. If the remaining volume of soup is not enough to complete the operation, we will serve as much as possible. We stop once we no longer have some quantity of both types of soup.
Note that we do not have an operation where all 100
ml's of soup B are used first.
The process stops immediately after any turn in which one of the soups is used up.
-Return the probability that soup A will be empty first, plus half the probability that A and B become empty at the same time. Answers within 10-5
of the actual answer will be accepted.
Return the probability that A is used up before B, plus half the probability that both soups are used up in the same turn. Answers within 10-5
of the actual answer will be accepted.
Example 1:
@@ -39,9 +45,10 @@ tags:Input: n = 50 Output: 0.62500 -Explanation: If we choose the first two operations, A will become empty first. -For the third operation, A and B will become empty at the same time. -For the fourth operation, B will become empty first. +Explanation: +If we perform either of the first two serving operations, soup A will become empty first. +If we perform the third operation, A and B will become empty at the same time. +If we perform the fourth operation, B will become empty first. So the total probability of A becoming empty first plus half the probability that A and B become empty at the same time, is 0.25 * (1 + 1 + 0.5 + 0) = 0.625.@@ -50,6 +57,12 @@ So the total probability of A becoming empty first plus half the probability tha
Input: n = 100 Output: 0.71875 +Explanation: +If we perform the first serving operation, soup A will become empty first. +If we perform the second serving operations, A will become empty on performing operation [1, 2, 3], and both A and B become empty on performing operation 4. +If we perform the third operation, A will become empty on performing operation [1, 2], and both A and B become empty on performing operation 3. +If we perform the fourth operation, A will become empty on performing operation 1, and both A and B become empty on performing operation 2. +So the total probability of A becoming empty first plus half the probability that A and B become empty at the same time, is 0.71875.
@@ -155,7 +168,7 @@ class Solution { public: double soupServings(int n) { double f[200][200] = {0.0}; - function
There are n
cars at given miles away from the starting mile 0, traveling to reach the mile target
.
You are given two integer array position
and speed
, both of length n
, where position[i]
is the starting mile of the ith
car and speed[i]
is the speed of the ith
car in miles per hour.
You are given two integer arrays position
and speed
, both of length n
, where position[i]
is the starting mile of the ith
car and speed[i]
is the speed of the ith
car in miles per hour.
A car cannot pass another car, but it can catch up and then travel next to it at the speed of the slower car.
@@ -117,9 +117,7 @@ class Solution { public int carFleet(int target, int[] position, int[] speed) { int n = position.length; Integer[] idx = new Integer[n]; - for (int i = 0; i < n; ++i) { - idx[i] = i; - } + Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i, j) -> position[j] - position[i]); int ans = 0; double pre = 0; diff --git a/solution/0800-0899/0853.Car Fleet/Solution.java b/solution/0800-0899/0853.Car Fleet/Solution.java index c346687da335c..593a14db56bc7 100644 --- a/solution/0800-0899/0853.Car Fleet/Solution.java +++ b/solution/0800-0899/0853.Car Fleet/Solution.java @@ -2,9 +2,7 @@ class Solution { public int carFleet(int target, int[] position, int[] speed) { int n = position.length; Integer[] idx = new Integer[n]; - for (int i = 0; i < n; ++i) { - idx[i] = i; - } + Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i, j) -> position[j] - position[i]); int ans = 0; double pre = 0; diff --git a/solution/0800-0899/0854.K-Similar Strings/README.md b/solution/0800-0899/0854.K-Similar Strings/README.md index 901f3eddf2b6e..8c3b0849eb9e6 100644 --- a/solution/0800-0899/0854.K-Similar Strings/README.md +++ b/solution/0800-0899/0854.K-Similar Strings/README.md @@ -4,6 +4,7 @@ difficulty: 困难 edit_url: https://github.com/doocs/leetcode/edit/main/solution/0800-0899/0854.K-Similar%20Strings/README.md tags: - 广度优先搜索 + - 哈希表 - 字符串 --- diff --git a/solution/0800-0899/0854.K-Similar Strings/README_EN.md b/solution/0800-0899/0854.K-Similar Strings/README_EN.md index 793ae5c5199ba..e900f8a5eccd5 100644 --- a/solution/0800-0899/0854.K-Similar Strings/README_EN.md +++ b/solution/0800-0899/0854.K-Similar Strings/README_EN.md @@ -4,6 +4,7 @@ difficulty: Hard edit_url: https://github.com/doocs/leetcode/edit/main/solution/0800-0899/0854.K-Similar%20Strings/README_EN.md tags: - Breadth-First Search + - Hash Table - String --- diff --git a/solution/0800-0899/0869.Reordered Power of 2/README.md b/solution/0800-0899/0869.Reordered Power of 2/README.md index 7f95d385979ca..2910c92032ee1 100644 --- a/solution/0800-0899/0869.Reordered Power of 2/README.md +++ b/solution/0800-0899/0869.Reordered Power of 2/README.md @@ -57,7 +57,15 @@ tags: -### 方法一 +### 方法一:枚举 + +我们可以在 $[1, 10^9]$ 的范围内枚举所有的 $2$ 的幂,判断它们的数字组成是否与给定的数字相同。 + +定义一个函数 $f(x)$,表示数字 $x$ 的数字组成。我们可以将数字 $x$ 转换为一个长度为 $10$ 的数组,或者一个按数字大小排序的字符串。 + +首先,我们计算给定数字 $n$ 的数字组成 $\text{target} = f(n)$。然后,我们枚举 $i$ 从 1 开始,每次将 $i$ 左移一位(相当于乘以 $2$),直到 $i$ 超过 $10^9$。对于每个 $i$,我们计算它的数字组成,并与 $\text{target}$ 进行比较。如果相同,则返回 $\text{true}$;如果枚举结束仍未找到相同的数字组成,则返回 $\text{false}$。 + +时间复杂度 $O(\log^2 M)$,空间复杂度 $O(\log M)$。其中 $M$ 是本题的输入范围上限 ${10}^9$。 @@ -66,16 +74,17 @@ tags: ```python class Solution: def reorderedPowerOf2(self, n: int) -> bool: - def convert(n): + def f(x: int) -> List[int]: cnt = [0] * 10 - while n: - n, v = divmod(n, 10) + while x: + x, v = divmod(x, 10) cnt[v] += 1 return cnt - i, s = 1, convert(n) + target = f(n) + i = 1 while i <= 10**9: - if convert(i) == s: + if f(i) == target: return True i <<= 1 return False @@ -86,19 +95,19 @@ class Solution: ```java class Solution { public boolean reorderedPowerOf2(int n) { - String s = convert(n); - for (int i = 1; i <= Math.pow(10, 9); i <<= 1) { - if (s.equals(convert(i))) { + String target = f(n); + for (int i = 1; i <= 1000000000; i <<= 1) { + if (target.equals(f(i))) { return true; } } return false; } - private String convert(int n) { + private String f(int x) { char[] cnt = new char[10]; - for (; n > 0; n /= 10) { - cnt[n % 10]++; + for (; x > 0; x /= 10) { + cnt[x % 10]++; } return new String(cnt); } @@ -111,17 +120,23 @@ class Solution { class Solution { public: bool reorderedPowerOf2(int n) { - vector如果序列 X_1, X_2, ..., X_n
满足下列条件,就说它是 斐波那契式 的:
如果序列 x1, x2, ..., xn
满足下列条件,就说它是 斐波那契式 的:
n >= 3
i + 2 <= n
,都有 X_i + X_{i+1} = X_{i+2}
n >= 3
i + 2 <= n
,都有 xi + xi+1 == xi+2
给定一个严格递增的正整数数组形成序列 arr ,找到 arr 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。
+给定一个 严格递增 的正整数数组形成序列 arr
,找到 arr
中最长的斐波那契式的子序列的长度。如果不存在,返回 0
。
(回想一下,子序列是从原序列 arr 中派生出来的,它从 arr 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, [3, 5, 8]
是 [3, 4, 5, 6, 7, 8]
的一个子序列)
子序列 是通过从另一个序列 arr
中删除任意数量的元素(包括删除 0 个元素)得到的,同时不改变剩余元素顺序。例如,[3, 5, 8]
是 [3, 4, 5, 6, 7, 8]
的子序列。
+
示例 2:
+示例 2:
输入: arr = [1,3,7,11,12,14,18] @@ -50,14 +50,14 @@ tags: 解释: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。-
+
提示:
3 <= arr.length <= 1000
3 <= arr.length <= 1000
1 <= arr[i] < arr[i + 1] <= 10^9
1 <= arr[i] < arr[i + 1] <= 109
在 n x n
的网格 grid
中,我们放置了一些与 x,y,z 三轴对齐的 1 x 1 x 1
立方体。
每个值 v = grid[i][j]
表示 v
个正方体叠放在单元格 (i, j)
上。
每个值 v = grid[i][j]
表示有一列 v
个正方体叠放在格子 (i, j)
上。
现在,我们查看这些立方体在 xy
、yz
和 zx
平面上的投影。
输入:nums = [5,2,3,1] 输出:[1,2,3,5] +解释:数组排序后,某些数字的位置没有改变(例如,2 和 3),而其他数字的位置发生了改变(例如,1 和 5)。
示例 2:
@@ -44,6 +45,7 @@ tags:输入:nums = [5,1,1,2,0,0] 输出:[0,0,1,1,2,5] +解释:请注意,nums 的值不一定唯一。
diff --git a/solution/0900-0999/0912.Sort an Array/README_EN.md b/solution/0900-0999/0912.Sort an Array/README_EN.md index 4459f121075b6..fe0d0ef1d3c87 100644 --- a/solution/0900-0999/0912.Sort an Array/README_EN.md +++ b/solution/0900-0999/0912.Sort an Array/README_EN.md @@ -41,7 +41,7 @@ tags:
Input: nums = [5,1,1,2,0,0] Output: [0,0,1,1,2,5] -Explanation: Note that the values of nums are not necessairly unique. +Explanation: Note that the values of nums are not necessarily unique.
diff --git a/solution/0900-0999/0923.3Sum With Multiplicity/README.md b/solution/0900-0999/0923.3Sum With Multiplicity/README.md index 8304f7ca2d34d..88ec551f961a0 100644 --- a/solution/0900-0999/0923.3Sum With Multiplicity/README.md +++ b/solution/0900-0999/0923.3Sum With Multiplicity/README.md @@ -12,7 +12,7 @@ tags: -# [923. 三数之和的多种可能](https://leetcode.cn/problems/3sum-with-multiplicity) +# [923. 多重三数之和](https://leetcode.cn/problems/3sum-with-multiplicity) [English Version](/solution/0900-0999/0923.3Sum%20With%20Multiplicity/README_EN.md) diff --git a/solution/0900-0999/0939.Minimum Area Rectangle/README.md b/solution/0900-0999/0939.Minimum Area Rectangle/README.md index 7a98ebe927790..7925013d4fd67 100644 --- a/solution/0900-0999/0939.Minimum Area Rectangle/README.md +++ b/solution/0900-0999/0939.Minimum Area Rectangle/README.md @@ -20,34 +20,36 @@ tags: -
给定在 xy 平面上的一组点,确定由这些点组成的矩形的最小面积,其中矩形的边平行于 x 轴和 y 轴。
+给你一个 X-Y 平面上的点数组 points
,其中 points[i] = [xi, yi]
。
如果没有任何矩形,就返回 0。
+返回由这些点形成的矩形的最小面积,矩形的边与 X 轴和 Y 轴平行。如果不存在这样的矩形,则返回 0
。
-
示例 1:
- -输入:[[1,1],[1,3],[3,1],[3,3],[2,2]] -输出:4 +示例 1:
++
+输入: points = [[1,1],[1,3],[3,1],[3,3],[2,2]] +输出: 4-示例 2:
- -输入:[[1,1],[1,3],[3,1],[3,3],[4,1],[4,3]] -输出:2 +示例 2:
++
+输入: points = [[1,1],[1,3],[3,1],[3,3],[4,1],[4,3]] +输出: 2
提示:
-+
+
- -
1 <= points.length <= 500
- -
0 <= points[i][0] <= 40000
- -
0 <= points[i][1] <= 40000
- 所有的点都是不同的。
-
points[i].length == 2
0 <= xi, yi <= 4 * 104
只要经过一定次数的翻转操作后,能使 X 等于 Y,我们就称二叉树 X 翻转 等价 于二叉树 Y。
-这些树由根节点 root1
和 root2
给出。如果两个二叉树是否是翻转 等价 的函数,则返回 true
,否则返回 false
。
这些树由根节点 root1
和 root2
给出。如果两个二叉树是否是翻转 等价 的树,则返回 true
,否则返回 false
。
diff --git a/solution/0900-0999/0963.Minimum Area Rectangle II/README.md b/solution/0900-0999/0963.Minimum Area Rectangle II/README.md index 4f23117a1fb07..95985de7da993 100644 --- a/solution/0900-0999/0963.Minimum Area Rectangle II/README.md +++ b/solution/0900-0999/0963.Minimum Area Rectangle II/README.md @@ -5,6 +5,7 @@ edit_url: https://github.com/doocs/leetcode/edit/main/solution/0900-0999/0963.Mi tags: - 几何 - 数组 + - 哈希表 - 数学 --- @@ -18,58 +19,48 @@ tags: -
给定在 xy 平面上的一组点,确定由这些点组成的任何矩形的最小面积,其中矩形的边不一定平行于 x 轴和 y 轴。
+给你一个 X-Y 平面上的点数组 points
,其中 points[i] = [xi, yi]
。
如果没有任何矩形,就返回 0。
+返回由这些点形成的任意矩形的最小面积,矩形的边 不一定 平行于 X 轴和 Y 轴。如果不存在这样的矩形,则返回 0
。
- -
示例 1:
- -输入:[[1,2],[2,1],[1,0],[0,1]] -输出:2.00000 -解释:最小面积的矩形出现在 [1,2],[2,1],[1,0],[0,1] 处,面积为 2。- -
示例 2:
+答案只需在10-5
的误差范围内即可被视作正确答案。
-
输入:[[0,1],[2,1],[1,1],[1,0],[2,0]] -输出:1.00000 -解释:最小面积的矩形出现在 [1,0],[1,1],[2,1],[2,0] 处,面积为 1。 +示例 1:
++
+输入: points = [[1,2],[2,1],[1,0],[0,1]] +输出: 2.00000 +解释: 最小面积矩形由 [1,2]、[2,1]、[1,0]、[0,1] 组成,其面积为 2。-示例 3:
- -- -
输入:[[0,3],[1,2],[3,1],[1,3],[2,1]] -输出:0 -解释:没法从这些点中组成任何矩形。 +示例 2:
++
+输入: points = [[0,1],[2,1],[1,1],[1,0],[2,0]] +输出: 1.00000 +解释: 最小面积矩形由 [1,0]、[1,1]、[2,1]、[2,0] 组成,其面积为 1。-示例 4:
- -- -
输入:[[3,1],[1,1],[0,1],[2,1],[3,3],[3,2],[0,2],[2,3]] -输出:2.00000 -解释:最小面积的矩形出现在 [2,1],[2,3],[3,3],[3,1] 处,面积为 2。 +示例 3:
++
+输入: points = [[0,3],[1,2],[3,1],[1,3],[2,1]] +输出: 0 +解释: 无法由这些点组成任何矩形。
提示:
-+
+
- -
1 <= points.length <= 50
- -
0 <= points[i][0] <= 40000
- -
0 <= points[i][1] <= 40000
- 所有的点都是不同的。
-- 与真实值误差不超过
-10^-5
的答案将视为正确结果。
points[i].length == 2
0 <= xi, yi <= 4 * 104
给出 字符串 text
和 字符串列表 words
, 返回所有的索引对 [i, j]
使得在索引对范围内的子字符串 text[i]...text[j]
(包括 i
和 j
)属于字符串列表 words
。
给出 字符串 text
和 字符串列表 words
, 返回所有的索引对 [i, j]
使得子字符串 text[i]...text[j]
(包括 i
和 j
)属于字符串列表 words
。
按顺序返回索引对 [i, j]
(即,按它们的第一个坐标进行排序,如果相同,则按它们的第二个坐标对它们进行排序)。
示例 1:
-输入: text = "thestoryofleetcodeandme", words = ["story","fleet","leetcode"] ++输入: text = "thestoryofleetcodeandme", words = ["story","fleet","leetcode"] 输出: [[3,7],[9,13],[10,17]]示例 2:
-输入: text = "ababa", words = ["aba","ab"] ++输入: text = "ababa", words = ["aba","ab"] 输出: [[0,1],[0,2],[2,3],[2,4]] 解释: -注意,返回的配对可以有交叉,比如,"aba" 既在 [0,2] 中也在 [2,4] 中 +注意,返回的配对可以有交叉,比如,"aba" 既在 [0,2] 中也在 [2,4] 中
提示:
--
+- 所有字符串都只包含小写字母。
-- 保证
+words
中的字符串无重复。
1 <= text.length <= 100
1 <= words.length <= 20
- -
1 <= words[i].length <= 50
- 按序返回索引对
-[i,j]
(即,按照索引对的第一个索引进行排序,当第一个索引对相同时按照第二个索引对排序)。
text
和 words[i]
都只包含小写字母。words
中的字符串无重复。A defanged IP address replaces every period "."
with "[.]"
.
+
Example 1:
+Input: address = "1.1.1.1" + Output: "1[.]1[.]1[.]1" +
Example 2:
+Input: address = "255.100.50.0" + Output: "255[.]100[.]50[.]0" ++
+
Constraints:
address
is a valid IPv4 address.address
is a valid IPv4 address.A string is a valid parentheses string (denoted VPS) if and only if it consists of "("
and ")"
characters only, and:
AB
(A
concatenated with B
), where A
and B
are VPS's, or(A)
, where A
is a VPS.AB
(A
concatenated with B
), where A
and B
are VPS's, or(A)
, where A
is a VPS.We can similarly define the nesting depth depth(S)
of any VPS S
as follows:
depth("") = 0
depth(A + B) = max(depth(A), depth(B))
, where A
and B
are VPS'sdepth("(" + A + ")") = 1 + depth(A)
, where A
is a VPS.depth("") = 0
depth(A + B) = max(depth(A), depth(B))
, where A
and B
are VPS'sdepth("(" + A + ")") = 1 + depth(A)
, where A
is a VPS.For example, ""
, "()()"
, and "()(()())"
are VPS's (with nesting depths 0, 1, and 2), and ")("
and "(()"
are not VPS's.
We may make the following moves:
'U'
moves our position up one row, if the position exists on the board;'D'
moves our position down one row, if the position exists on the board;'L'
moves our position left one column, if the position exists on the board;'R'
moves our position right one column, if the position exists on the board;'!'
adds the character board[r][c]
at our current position (r, c)
to the answer.'U'
moves our position up one row, if the position exists on the board;'D'
moves our position down one row, if the position exists on the board;'L'
moves our position left one column, if the position exists on the board;'R'
moves our position right one column, if the position exists on the board;'!'
adds the character board[r][c]
at our current position (r, c)
to the answer.(Here, the only positions that exist on the board are positions with letters on them.)
@@ -40,19 +46,31 @@ tags:Return a sequence of moves that makes our answer equal to target
in the minimum number of moves. You may return any path that does so.
+
Example 1:
+Input: target = "leet" + Output: "DDR!UURRR!!DDD!" +
Example 2:
+Input: target = "code" + Output: "RR!DDRR!UUL!R!" ++
+
Constraints:
1 <= target.length <= 100
target
consists only of English lowercase letters.1 <= target.length <= 100
target
consists only of English lowercase letters.Given a 2D grid
of 0
s and 1
s, return the number of elements in the largest square subgrid that has all 1
s on its border, or 0
if such a subgrid doesn't exist in the grid
.
+
Example 1:
+ Input: grid = [[1,1,1],[1,0,1],[1,1,1]] + Output: 9 +
Example 2:
+ Input: grid = [[1,1,0,0]] + Output: 1 +
+
Constraints:
1 <= grid.length <= 100
1 <= grid[0].length <= 100
grid[i][j]
is 0
or 1
1 <= grid.length <= 100
1 <= grid[0].length <= 100
grid[i][j]
is 0
or 1
+
一开始,所有产品价格都为 10。
-编写一个解决方案,找出在 2019-08-16
时全部产品的价格,假设所有产品在修改前的价格都是 10
。
编写一个解决方案,找出在 2019-08-16
所有产品的价格。
以 任意顺序 返回结果表。
diff --git a/solution/1100-1199/1164.Product Price at a Given Date/README_EN.md b/solution/1100-1199/1164.Product Price at a Given Date/README_EN.md index 9e6ffa8caf273..0f8436fcb8040 100644 --- a/solution/1100-1199/1164.Product Price at a Given Date/README_EN.md +++ b/solution/1100-1199/1164.Product Price at a Given Date/README_EN.md @@ -29,13 +29,13 @@ tags: (product_id, change_date) is the primary key (combination of columns with unique values) of this table. Each row of this table indicates that the price of some product was changed to a new price at some date. -+
Initially, all products have price 10.
-Write a solution to find the prices of all products on 2019-08-16
. Assume the price of all products before any change is 10
.
Write a solution to find the prices of all products on the date 2019-08-16
.
Return the result table in any order.
-The result format is in the following example.
+The result format is in the following example.
Example 1:
diff --git a/solution/1100-1199/1184.Distance Between Bus Stops/README_EN.md b/solution/1100-1199/1184.Distance Between Bus Stops/README_EN.md index d947861120f5a..b4e5e94f2f0f6 100644 --- a/solution/1100-1199/1184.Distance Between Bus Stops/README_EN.md +++ b/solution/1100-1199/1184.Distance Between Bus Stops/README_EN.md @@ -25,13 +25,17 @@ tags:Return the shortest distance between the given start
and destination
stops.
+
Example 1:
+ Input: distance = [1,2,3,4], start = 0, destination = 1 + Output: 1 + Explanation: Distance between 0 and 1 is 1 or 9, minimum is 1.
@@ -41,9 +45,13 @@ tags:
+ Input: distance = [1,2,3,4], start = 0, destination = 2 + Output: 3 + Explanation: Distance between 0 and 2 is 3 or 7, minimum is 3. +
@@ -53,19 +61,29 @@ tags:
+ Input: distance = [1,2,3,4], start = 0, destination = 3 + Output: 4 + Explanation: Distance between 0 and 3 is 6 or 4, minimum is 4. +
+
Constraints:
1 <= n <= 10^4
distance.length == n
0 <= start, destination < n
0 <= distance[i] <= 10^4
1 <= n <= 10^4
distance.length == n
0 <= start, destination < n
0 <= distance[i] <= 10^4
给定一个链接 startUrl
和一个接口 HtmlParser
,请你实现一个网络爬虫,以实现爬取同 startUrl
拥有相同 主机名 的全部链接。
给定一个网址 startUrl
和一个接口 HtmlParser
,请你实现一个网络爬虫,以实现爬取同 startUrl
拥有相同 主机名 的全部链接。
该爬虫得到的全部链接可以 任何顺序 返回结果。
+该爬虫得到的全部网址可以 任何顺序 返回结果。
你的网络爬虫应当按照如下模式工作:
startUrl
开始爬取HtmlParser.getUrls(url)
来获得链接url
页面中的全部链接startUrl
开始爬取HtmlParser.getUrls(url)
来获得给定 url
网址中的全部链接startUrl
相同 的链接集合startUrl
相同 的链接集合如上所示的一个链接,其域名为 example.org
。简单起见,你可以假设所有的链接都采用 http协议 并没有指定 端口。例如,链接 http://leetcode.com/problems
和 http://leetcode.com/contest
是同一个域名下的,而链接 http://example.org/test
和 http://example.com/abc
是不在同一域名下的。
如上所示的一个网址,其域名为 example.org
。简单起见,你可以假设所有的网址都采用 http协议 并没有指定 端口。例如,网址 http://leetcode.com/problems
和 http://leetcode.com/contest
是同一个域名下的,而网址 http://example.org/test
和 http://example.com/abc
是不在同一域名下的。
HtmlParser
接口定义如下:
下面是两个实例,用以解释该问题的设计功能,对于自定义测试,你可以使用三个变量 urls
, edges
和 startUrl
。注意在代码实现中,你只可以访问 startUrl
,而 urls
和 edges
不可以在你的代码中被直接访问。
注意:将尾随斜线“/”的相同 URL 视为不同的 URL。例如,“http://news.yahoo.com” 和 “http://news.yahoo.com/” 是不同的域名。
+注意:将尾随斜线“/”的相同网址视为不同的网址。例如,“http://news.yahoo.com” 和 “http://news.yahoo.com/” 是不同的网址。
diff --git a/solution/1200-1299/1238.Circular Permutation in Binary Representation/README_EN.md b/solution/1200-1299/1238.Circular Permutation in Binary Representation/README_EN.md index 57a0b48ed9325..f3d3a209aa212 100644 --- a/solution/1200-1299/1238.Circular Permutation in Binary Representation/README_EN.md +++ b/solution/1200-1299/1238.Circular Permutation in Binary Representation/README_EN.md @@ -23,35 +23,53 @@ tags:
Given 2 integers n
and start
. Your task is return any permutation p
of (0,1,2.....,2^n -1)
such that :
p[0] = start
p[i]
and p[i+1]
differ by only one bit in their binary representation.p[0]
and p[2^n -1]
must also differ by only one bit in their binary representation.p[0] = start
p[i]
and p[i+1]
differ by only one bit in their binary representation.p[0]
and p[2^n -1]
must also differ by only one bit in their binary representation.+
Example 1:
+ Input: n = 2, start = 3 + Output: [3,2,0,1] + Explanation: The binary representation of the permutation is (11,10,00,01). + All the adjacent element differ by one bit. Another valid permutation is [3,1,0,2] +
Example 2:
+ Input: n = 3, start = 2 + Output: [2,6,7,5,4,0,1,3] + Explanation: The binary representation of the permutation is (010,110,111,101,100,000,001,011). +
+
Constraints:
1 <= n <= 16
0 <= start < 2 ^ n
1 <= n <= 16
0 <= start < 2 ^ n
+
Example 1:
+ Input: num = 23 + Output: "1000" +
Example 2:
+ Input: num = 107 + Output: "101100" +
+
Constraints:
0 <= num <= 10^9
0 <= num <= 10^9
请你返回该链表所表示数字的 十进制值 。
+最高位 在链表的头部。
+
示例 1:
-输入:head = [1,0,1] +Explanation: This example follows case 3 because node p is not in the sub-tree of node q and vice-versa. We can move node 3 with its sub-tree and make it as node 8's child. ++输入:head = [1,0,1] 输出:5 解释:二进制数 (101) 转化为十进制数 (5)示例 2:
-输入:head = [0] -输出:0 -- -示例 3:
- -输入:head = [1] -输出:1 -- -示例 4:
- -输入:head = [1,0,0,1,0,0,1,1,1,0,0,0,0,0,0] -输出:18880 -- -示例 5:
- -输入:head = [0,0] +++输入:head = [0] 输出:0@@ -76,11 +62,11 @@ tags: ### 方法一:遍历链表 -我们用变量 `ans` 记录当前的十进制值,初始值为 $0$。 +我们用变量 $\textit{ans}$ 记录当前的十进制值,初始值为 $0$。 -遍历链表,对于每个结点,将 `ans` 左移一位,然后再或上当前结点的值。遍历结束后,`ans` 即为十进制值。 +遍历链表,对于每个结点,将 $\textit{ans}$ 左移一位,然后再或上当前结点的值。遍历结束后,$\textit{ans}$ 即为十进制值。 -时间复杂度 $O(n)$,空间复杂度 $O(1)$。其中 $n$ 为链表的长度。 +时间复杂度 $O(n)$,其中 $n$ 为链表的长度。空间复杂度 $O(1)$。 @@ -212,12 +198,11 @@ function getDecimalValue(head: ListNode | null): number { // } // } impl Solution { - pub fn get_decimal_value(head: Option>) -> i32 { + pub fn get_decimal_value(mut head: Option >) -> i32 { let mut ans = 0; - let mut cur = &head; - while let Some(node) = cur { + while let Some(node) = head { ans = (ans << 1) | node.val; - cur = &node.next; + head = node.next; } ans } @@ -247,6 +232,31 @@ var getDecimalValue = function (head) { }; ``` +#### C# + +```cs +/** + * Definition for singly-linked list. + * public class ListNode { + * public int val; + * public ListNode next; + * public ListNode(int val=0, ListNode next=null) { + * this.val = val; + * this.next = next; + * } + * } + */ +public class Solution { + public int GetDecimalValue(ListNode head) { + int ans = 0; + for (; head != null; head = head.next) { + ans = ans << 1 | head.val; + } + return ans; + } +} +``` + #### PHP ```php @@ -267,13 +277,12 @@ class Solution { * @return Integer */ function getDecimalValue($head) { - $rs = []; - while ($head != null) { - array_push($rs, $head->val); + $ans = 0; + while ($head !== null) { + $ans = ($ans << 1) | $head->val; $head = $head->next; } - $rsStr = implode($rs); - return bindec($rsStr); + return $ans; } } ``` diff --git a/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/README_EN.md b/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/README_EN.md index 3e49f84db6367..5d6aaab02c5ac 100644 --- a/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/README_EN.md +++ b/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/README_EN.md @@ -56,7 +56,13 @@ tags: -### Solution 1 +### Solution 1: Traverse the Linked List + +We use a variable $\textit{ans}$ to record the current decimal value, with an initial value of $0$. + +Traverse the linked list. For each node, left-shift $\textit{ans}$ by one bit, then perform a bitwise OR with the current node's value. After traversal, $\textit{ans}$ is the decimal value. + +The time complexity is $O(n)$, where $n$ is the length of the linked list. The space complexity is $O(1)$. @@ -188,12 +194,11 @@ function getDecimalValue(head: ListNode | null): number { // } // } impl Solution { - pub fn get_decimal_value(head: Option >) -> i32 { + pub fn get_decimal_value(mut head: Option >) -> i32 { let mut ans = 0; - let mut cur = &head; - while let Some(node) = cur { + while let Some(node) = head { ans = (ans << 1) | node.val; - cur = &node.next; + head = node.next; } ans } @@ -223,6 +228,31 @@ var getDecimalValue = function (head) { }; ``` +#### C# + +```cs +/** + * Definition for singly-linked list. + * public class ListNode { + * public int val; + * public ListNode next; + * public ListNode(int val=0, ListNode next=null) { + * this.val = val; + * this.next = next; + * } + * } + */ +public class Solution { + public int GetDecimalValue(ListNode head) { + int ans = 0; + for (; head != null; head = head.next) { + ans = ans << 1 | head.val; + } + return ans; + } +} +``` + #### PHP ```php @@ -243,13 +273,12 @@ class Solution { * @return Integer */ function getDecimalValue($head) { - $rs = []; - while ($head != null) { - array_push($rs, $head->val); + $ans = 0; + while ($head !== null) { + $ans = ($ans << 1) | $head->val; $head = $head->next; } - $rsStr = implode($rs); - return bindec($rsStr); + return $ans; } } ``` diff --git a/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.cs b/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.cs new file mode 100644 index 0000000000000..bbfcf9dbff062 --- /dev/null +++ b/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.cs @@ -0,0 +1,20 @@ +/** + * Definition for singly-linked list. + * public class ListNode { + * public int val; + * public ListNode next; + * public ListNode(int val=0, ListNode next=null) { + * this.val = val; + * this.next = next; + * } + * } + */ +public class Solution { + public int GetDecimalValue(ListNode head) { + int ans = 0; + for (; head != null; head = head.next) { + ans = ans << 1 | head.val; + } + return ans; + } +} \ No newline at end of file diff --git a/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.php b/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.php index 7ddaf720fe6ae..514bc47573ca4 100644 --- a/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.php +++ b/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.php @@ -15,12 +15,11 @@ class Solution { * @return Integer */ function getDecimalValue($head) { - $rs = []; - while ($head != null) { - array_push($rs, $head->val); + $ans = 0; + while ($head !== null) { + $ans = ($ans << 1) | $head->val; $head = $head->next; } - $rsStr = implode($rs); - return bindec($rsStr); + return $ans; } } \ No newline at end of file diff --git a/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.rs b/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.rs index 7c122a66fc0df..b3f205ea5f95c 100644 --- a/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.rs +++ b/solution/1200-1299/1290.Convert Binary Number in a Linked List to Integer/Solution.rs @@ -15,12 +15,11 @@ // } // } impl Solution { - pub fn get_decimal_value(head: Option >) -> i32 { + pub fn get_decimal_value(mut head: Option >) -> i32 { let mut ans = 0; - let mut cur = &head; - while let Some(node) = cur { + while let Some(node) = head { ans = (ans << 1) | node.val; - cur = &node.next; + head = node.next; } ans } diff --git a/solution/1300-1399/1301.Number of Paths with Max Score/README_EN.md b/solution/1300-1399/1301.Number of Paths with Max Score/README_EN.md index e9ae14167981a..42f8aab8492d8 100644 --- a/solution/1300-1399/1301.Number of Paths with Max Score/README_EN.md +++ b/solution/1300-1399/1301.Number of Paths with Max Score/README_EN.md @@ -29,21 +29,35 @@ tags: In case there is no path, return
[0, 0]
.+
Example 1:
+Input: board = ["E23","2X2","12S"] + Output: [7,1] +Example 2:
+Input: board = ["E12","1X1","21S"] + Output: [4,2] +Example 3:
+Input: board = ["E11","XXX","11S"] + Output: [0,0] +++
Constraints:
-
diff --git a/solution/1300-1399/1318.Minimum Flips to Make a OR b Equal to c/README_EN.md b/solution/1300-1399/1318.Minimum Flips to Make a OR b Equal to c/README_EN.md index 25cf3e136deec..5d94e91fb76df 100644 --- a/solution/1300-1399/1318.Minimum Flips to Make a OR b Equal to c/README_EN.md +++ b/solution/1300-1399/1318.Minimum Flips to Make a OR b Equal to c/README_EN.md @@ -19,39 +19,55 @@ tags:- + +
2 <= board.length == board[i].length <= 100
- +
2 <= board.length == board[i].length <= 100
Given 3 positives numbers
a
,b
andc
. Return the minimum flips required in some bits ofa
andb
to make (a
ORb
==c
). (bitwise OR operation).
+ Flip operation consists of change any single bit 1 to 0 or change the bit 0 to 1 in their binary representation.+
Example 1:
+ Input: a = 2, b = 6, c = 5 + Output: 3 + Explanation: After flips a = 1 , b = 4 , c = 5 such that (a
ORb
==c
)Example 2:
+ Input: a = 4, b = 2, c = 7 + Output: 1 +Example 3:
+ Input: a = 1, b = 2, c = 3 + Output: 0 ++
Constraints:
-
diff --git a/solution/1300-1399/1324.Print Words Vertically/README_EN.md b/solution/1300-1399/1324.Print Words Vertically/README_EN.md index e1542d061c72f..c86ec25b2c2cb 100644 --- a/solution/1300-1399/1324.Print Words Vertically/README_EN.md +++ b/solution/1300-1399/1324.Print Words Vertically/README_EN.md @@ -21,46 +21,71 @@ tags:- -
1 <= a <= 10^9
- -
1 <= b <= 10^9
- + +
1 <= c <= 10^9
- + +
1 <= a <= 10^9
- + +
1 <= b <= 10^9
- +
1 <= c <= 10^9
Given a string
s
. Return all the words vertically in the same order in which they appear ins
.
+ Words are returned as a list of strings, complete with spaces when is necessary. (Trailing spaces are not allowed).
+ Each word would be put on only one column and that in one column there will be only one word.+
Example 1:
+ Input: s = "HOW ARE YOU" + Output: ["HAY","ORO","WEU"] + Explanation: Each word is printed vertically. + "HAY" + "ORO" + "WEU" +Example 2:
+ Input: s = "TO BE OR NOT TO BE" + Output: ["TBONTB","OEROOE"," T"] + Explanation: Trailing spaces is not allowed. + "TBONTB" + "OEROOE" + " T" +Example 3:
+ Input: s = "CONTEST IS COMING" + Output: ["CIC","OSO","N M","T I","E N","S G","T"] ++
Constraints:
-
diff --git a/solution/1300-1399/1334.Find the City With the Smallest Number of Neighbors at a Threshold Distance/README.md b/solution/1300-1399/1334.Find the City With the Smallest Number of Neighbors at a Threshold Distance/README.md index 20c633d1c9fe2..83f740df319b5 100644 --- a/solution/1300-1399/1334.Find the City With the Smallest Number of Neighbors at a Threshold Distance/README.md +++ b/solution/1300-1399/1334.Find the City With the Smallest Number of Neighbors at a Threshold Distance/README.md @@ -30,7 +30,7 @@ tags:- -
1 <= s.length <= 200
- -
s
contains only upper case English letters.- It's guaranteed that there is only one space between 2 words.
+ +- + +
1 <= s.length <= 200
- + +
s
contains only upper case English letters.- It's guaranteed that there is only one space between 2 words.
+示例 1:
-+
输入:n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4 @@ -46,7 +46,7 @@ tags:示例 2:
-+
输入:n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2 diff --git a/solution/1300-1399/1340.Jump Game V/README.md b/solution/1300-1399/1340.Jump Game V/README.md index 0660b49704759..b51d004488eaa 100644 --- a/solution/1300-1399/1340.Jump Game V/README.md +++ b/solution/1300-1399/1340.Jump Game V/README.md @@ -280,9 +280,7 @@ class Solution { public int maxJumps(int[] arr, int d) { int n = arr.length; Integer[] idx = new Integer[n]; - for (int i = 0; i < n; ++i) { - idx[i] = i; - } + Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i, j) -> arr[i] - arr[j]); int[] f = new int[n]; Arrays.fill(f, 1); diff --git a/solution/1300-1399/1340.Jump Game V/README_EN.md b/solution/1300-1399/1340.Jump Game V/README_EN.md index 96a1c9e3a29e9..d502c5e896373 100644 --- a/solution/1300-1399/1340.Jump Game V/README_EN.md +++ b/solution/1300-1399/1340.Jump Game V/README_EN.md @@ -251,9 +251,7 @@ class Solution { public int maxJumps(int[] arr, int d) { int n = arr.length; Integer[] idx = new Integer[n]; - for (int i = 0; i < n; ++i) { - idx[i] = i; - } + Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i, j) -> arr[i] - arr[j]); int[] f = new int[n]; Arrays.fill(f, 1); diff --git a/solution/1300-1399/1340.Jump Game V/Solution2.java b/solution/1300-1399/1340.Jump Game V/Solution2.java index 7eadbd4bb0a0a..9dd9b724cefe3 100644 --- a/solution/1300-1399/1340.Jump Game V/Solution2.java +++ b/solution/1300-1399/1340.Jump Game V/Solution2.java @@ -2,9 +2,7 @@ class Solution { public int maxJumps(int[] arr, int d) { int n = arr.length; Integer[] idx = new Integer[n]; - for (int i = 0; i < n; ++i) { - idx[i] = i; - } + Arrays.setAll(idx, i -> i); Arrays.sort(idx, (i, j) -> arr[i] - arr[j]); int[] f = new int[n]; Arrays.fill(f, 1); diff --git a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/README.md b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/README.md index 1cbd1775a10f1..350c5c527eb1d 100644 --- a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/README.md +++ b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/README.md @@ -68,13 +68,17 @@ tags: ### 方法一:哈希表 + 贪心 + 优先队列 -定义哈希表记录每个会议的开始和结束时间,其中键为会议开始时间,值为结束时间列表。 +我们用一个哈希表 $\textit{g}$ 记录每个会议的开始和结束时间。键为会议的开始时间,值为一个列表,包含所有在该开始时间开始的会议的结束时间。用两个变量 $\textit{l}$ 和 $\textit{r}$ 分别记录会议的最小开始时间和最大结束时间。 -枚举当前时间 $s$,找出所有开始时间等于当前时间的会议,将其结束时间加入优先队列(小根堆)中。同时,优先队列要移除所有结束时间小于当前时间的会议。 +对于从小到大每个在 $\textit{l}$ 到 $\textit{r}$ 的时间点 $s$,我们需要做以下操作: -然后从优先队列中取出结束时间最小的会议,即为当前时间可以参加的会议,累加答案数。如果优先队列为空,则说明当前时间没有可以参加的会议。 +1. 从优先队列中移除所有结束时间小于当前时间 $s$ 的会议。 +2. 将所有开始时间等于当前时间 $s$ 的会议的结束时间加入优先队列中。 +3. 如果优先队列不为空,则取出结束时间最小的会议,累加答案数,并从优先队列中移除该会议。 -时间复杂度 $O(m \times \log n)$,空间复杂度 $O(n)$。其中 $m$, $n$ 分别表示会议的最大结束时间,以及会议的数量。 +这样,我们可以确保在每个时间点 $s$,我们都能参加结束时间最早的会议,从而最大化参加的会议数。 + +时间复杂度 $O(M \times \log n)$,空间复杂度 $O(n)$,其中 $M$ 和 $n$ 分别为会议的最大结束时间和会议的数量。 @@ -83,22 +87,22 @@ tags: ```python class Solution: def maxEvents(self, events: List[List[int]]) -> int: - d = defaultdict(list) - i, j = inf, 0 + g = defaultdict(list) + l, r = inf, 0 for s, e in events: - d[s].append(e) - i = min(i, s) - j = max(j, e) - h = [] + g[s].append(e) + l = min(l, s) + r = max(r, e) + pq = [] ans = 0 - for s in range(i, j + 1): - while h and h[0] < s: - heappop(h) - for e in d[s]: - heappush(h, e) - if h: + for s in range(l, r + 1): + while pq and pq[0] < s: + heappop(pq) + for e in g[s]: + heappush(pq, e) + if pq: + heappop(pq) ans += 1 - heappop(h) return ans ``` @@ -107,26 +111,26 @@ class Solution: ```java class Solution { public int maxEvents(int[][] events) { - Map> d = new HashMap<>(); - int i = Integer.MAX_VALUE, j = 0; - for (var v : events) { - int s = v[0], e = v[1]; - d.computeIfAbsent(s, k -> new ArrayList<>()).add(e); - i = Math.min(i, s); - j = Math.max(j, e); + Map > g = new HashMap<>(); + int l = Integer.MAX_VALUE, r = 0; + for (int[] event : events) { + int s = event[0], e = event[1]; + g.computeIfAbsent(s, k -> new ArrayList<>()).add(e); + l = Math.min(l, s); + r = Math.max(r, e); } - PriorityQueue q = new PriorityQueue<>(); + PriorityQueue pq = new PriorityQueue<>(); int ans = 0; - for (int s = i; s <= j; ++s) { - while (!q.isEmpty() && q.peek() < s) { - q.poll(); + for (int s = l; s <= r; s++) { + while (!pq.isEmpty() && pq.peek() < s) { + pq.poll(); } - for (int e : d.getOrDefault(s, Collections.emptyList())) { - q.offer(e); + for (int e : g.getOrDefault(s, List.of())) { + pq.offer(e); } - if (!q.isEmpty()) { - q.poll(); - ++ans; + if (!pq.isEmpty()) { + pq.poll(); + ans++; } } return ans; @@ -140,26 +144,26 @@ class Solution { class Solution { public: int maxEvents(vector >& events) { - unordered_map > d; - int i = INT_MAX, j = 0; - for (auto& v : events) { - int s = v[0], e = v[1]; - d[s].push_back(e); - i = min(i, s); - j = max(j, e); + unordered_map > g; + int l = INT_MAX, r = 0; + for (auto& event : events) { + int s = event[0], e = event[1]; + g[s].push_back(e); + l = min(l, s); + r = max(r, e); } - priority_queue , greater > q; + priority_queue , greater > pq; int ans = 0; - for (int s = i; s <= j; ++s) { - while (q.size() && q.top() < s) { - q.pop(); + for (int s = l; s <= r; ++s) { + while (!pq.empty() && pq.top() < s) { + pq.pop(); } - for (int e : d[s]) { - q.push(e); + for (int e : g[s]) { + pq.push(e); } - if (q.size()) { + if (!pq.empty()) { + pq.pop(); ++ans; - q.pop(); } } return ans; @@ -170,44 +174,123 @@ public: #### Go ```go -func maxEvents(events [][]int) int { - d := map[int][]int{} - i, j := math.MaxInt32, 0 - for _, v := range events { - s, e := v[0], v[1] - d[s] = append(d[s], e) - i = min(i, s) - j = max(j, e) +func maxEvents(events [][]int) (ans int) { + g := map[int][]int{} + l, r := math.MaxInt32, 0 + for _, event := range events { + s, e := event[0], event[1] + g[s] = append(g[s], e) + l = min(l, s) + r = max(r, e) } - q := hp{} - ans := 0 - for s := i; s <= j; s++ { - for q.Len() > 0 && q.IntSlice[0] < s { - heap.Pop(&q) + + pq := &hp{} + heap.Init(pq) + for s := l; s <= r; s++ { + for pq.Len() > 0 && pq.IntSlice[0] < s { + heap.Pop(pq) } - for _, e := range d[s] { - heap.Push(&q, e) + for _, e := range g[s] { + heap.Push(pq, e) } - if q.Len() > 0 { - heap.Pop(&q) + if pq.Len() > 0 { + heap.Pop(pq) ans++ } } - return ans + return } type hp struct{ sort.IntSlice } func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) } func (h *hp) Pop() any { - a := h.IntSlice - v := a[len(a)-1] - h.IntSlice = a[:len(a)-1] + n := len(h.IntSlice) + v := h.IntSlice[n-1] + h.IntSlice = h.IntSlice[:n-1] return v } func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] } ``` +#### TypeScript + +```ts +function maxEvents(events: number[][]): number { + const g: Map = new Map(); + let l = Infinity, + r = 0; + for (const [s, e] of events) { + if (!g.has(s)) g.set(s, []); + g.get(s)!.push(e); + l = Math.min(l, s); + r = Math.max(r, e); + } + + const pq = new MinPriorityQueue (); + let ans = 0; + for (let s = l; s <= r; s++) { + while (!pq.isEmpty() && pq.front() < s) { + pq.dequeue(); + } + for (const e of g.get(s) || []) { + pq.enqueue(e); + } + if (!pq.isEmpty()) { + pq.dequeue(); + ans++; + } + } + return ans; +} +``` + +#### Rust + +```rust +use std::collections::{BinaryHeap, HashMap}; +use std::cmp::Reverse; + +impl Solution { + pub fn max_events(events: Vec >) -> i32 { + let mut g: HashMap > = HashMap::new(); + let mut l = i32::MAX; + let mut r = 0; + + for event in events { + let s = event[0]; + let e = event[1]; + g.entry(s).or_default().push(e); + l = l.min(s); + r = r.max(e); + } + + let mut pq = BinaryHeap::new(); + let mut ans = 0; + + for s in l..=r { + while let Some(&Reverse(top)) = pq.peek() { + if top < s { + pq.pop(); + } else { + break; + } + } + if let Some(ends) = g.get(&s) { + for &e in ends { + pq.push(Reverse(e)); + } + } + if pq.pop().is_some() { + ans += 1; + } + } + + ans + } +} +``` + diff --git a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/README_EN.md b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/README_EN.md index 42234ff46dddb..9957c486820dd 100644 --- a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/README_EN.md +++ b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/README_EN.md @@ -23,7 +23,7 @@ tags: You are given an array of
-events
whereevents[i] = [startDayi, endDayi]
. Every eventi
starts atstartDayi
and ends atendDayi
.You can attend an event
+i
at any dayd
wherestartTimei <= d <= endTimei
. You can only attend one event at any timed
.You can attend an event
i
at any dayd
wherestartDayi <= d <= endDayi
. You can only attend one event at any timed
.Return the maximum number of events you can attend.
@@ -64,13 +64,17 @@ Attend the third event on day 3. ### Solution 1: Hash Table + Greedy + Priority Queue -Define a hash table to record the start and end times of each meeting, where the key is the start time of the meeting, and the value is a list of end times. +We use a hash table $\textit{g}$ to record the start and end times of each event. The key is the start time of the event, and the value is a list containing the end times of all events that start at that time. Two variables, $\textit{l}$ and $\textit{r}$, are used to record the minimum start time and the maximum end time among all events. -Enumerate the current time $s$, find all meetings that start at the current time, and add their end times to the priority queue (min heap). At the same time, the priority queue needs to remove all meetings that end before the current time. +For each time point $s$ from $\textit{l}$ to $\textit{r}$ in increasing order, we perform the following steps: -Then, take out the meeting with the smallest end time from the priority queue, which is the meeting that can be attended at the current time, and accumulate the answer count. If the priority queue is empty, it means that there are no meetings that can be attended at the current time. +1. Remove from the priority queue all events whose end time is less than the current time $s$. +2. Add the end times of all events that start at the current time $s$ to the priority queue. +3. If the priority queue is not empty, take out the event with the earliest end time, increment the answer count, and remove this event from the priority queue. -The time complexity is $O(m \times \log n)$, and the space complexity is $O(n)$. Where $m$ and $n$ represent the maximum end time of the meetings and the number of meetings, respectively. +In this way, we ensure that at each time point $s$, we always attend the event that ends the earliest, thus maximizing the number of events attended. + +The time complexity is $O(M \times \log n)$, and the space complexity is $O(n)$, where $M$ is the maximum end time and $n$ is the number of events. @@ -79,22 +83,22 @@ The time complexity is $O(m \times \log n)$, and the space complexity is $O(n)$. ```python class Solution: def maxEvents(self, events: List[List[int]]) -> int: - d = defaultdict(list) - i, j = inf, 0 + g = defaultdict(list) + l, r = inf, 0 for s, e in events: - d[s].append(e) - i = min(i, s) - j = max(j, e) - h = [] + g[s].append(e) + l = min(l, s) + r = max(r, e) + pq = [] ans = 0 - for s in range(i, j + 1): - while h and h[0] < s: - heappop(h) - for e in d[s]: - heappush(h, e) - if h: + for s in range(l, r + 1): + while pq and pq[0] < s: + heappop(pq) + for e in g[s]: + heappush(pq, e) + if pq: + heappop(pq) ans += 1 - heappop(h) return ans ``` @@ -103,26 +107,26 @@ class Solution: ```java class Solution { public int maxEvents(int[][] events) { - Map> d = new HashMap<>(); - int i = Integer.MAX_VALUE, j = 0; - for (var v : events) { - int s = v[0], e = v[1]; - d.computeIfAbsent(s, k -> new ArrayList<>()).add(e); - i = Math.min(i, s); - j = Math.max(j, e); + Map > g = new HashMap<>(); + int l = Integer.MAX_VALUE, r = 0; + for (int[] event : events) { + int s = event[0], e = event[1]; + g.computeIfAbsent(s, k -> new ArrayList<>()).add(e); + l = Math.min(l, s); + r = Math.max(r, e); } - PriorityQueue q = new PriorityQueue<>(); + PriorityQueue pq = new PriorityQueue<>(); int ans = 0; - for (int s = i; s <= j; ++s) { - while (!q.isEmpty() && q.peek() < s) { - q.poll(); + for (int s = l; s <= r; s++) { + while (!pq.isEmpty() && pq.peek() < s) { + pq.poll(); } - for (int e : d.getOrDefault(s, Collections.emptyList())) { - q.offer(e); + for (int e : g.getOrDefault(s, List.of())) { + pq.offer(e); } - if (!q.isEmpty()) { - q.poll(); - ++ans; + if (!pq.isEmpty()) { + pq.poll(); + ans++; } } return ans; @@ -136,26 +140,26 @@ class Solution { class Solution { public: int maxEvents(vector >& events) { - unordered_map > d; - int i = INT_MAX, j = 0; - for (auto& v : events) { - int s = v[0], e = v[1]; - d[s].push_back(e); - i = min(i, s); - j = max(j, e); + unordered_map > g; + int l = INT_MAX, r = 0; + for (auto& event : events) { + int s = event[0], e = event[1]; + g[s].push_back(e); + l = min(l, s); + r = max(r, e); } - priority_queue , greater > q; + priority_queue , greater > pq; int ans = 0; - for (int s = i; s <= j; ++s) { - while (q.size() && q.top() < s) { - q.pop(); + for (int s = l; s <= r; ++s) { + while (!pq.empty() && pq.top() < s) { + pq.pop(); } - for (int e : d[s]) { - q.push(e); + for (int e : g[s]) { + pq.push(e); } - if (q.size()) { + if (!pq.empty()) { + pq.pop(); ++ans; - q.pop(); } } return ans; @@ -166,44 +170,123 @@ public: #### Go ```go -func maxEvents(events [][]int) int { - d := map[int][]int{} - i, j := math.MaxInt32, 0 - for _, v := range events { - s, e := v[0], v[1] - d[s] = append(d[s], e) - i = min(i, s) - j = max(j, e) +func maxEvents(events [][]int) (ans int) { + g := map[int][]int{} + l, r := math.MaxInt32, 0 + for _, event := range events { + s, e := event[0], event[1] + g[s] = append(g[s], e) + l = min(l, s) + r = max(r, e) } - q := hp{} - ans := 0 - for s := i; s <= j; s++ { - for q.Len() > 0 && q.IntSlice[0] < s { - heap.Pop(&q) + + pq := &hp{} + heap.Init(pq) + for s := l; s <= r; s++ { + for pq.Len() > 0 && pq.IntSlice[0] < s { + heap.Pop(pq) } - for _, e := range d[s] { - heap.Push(&q, e) + for _, e := range g[s] { + heap.Push(pq, e) } - if q.Len() > 0 { - heap.Pop(&q) + if pq.Len() > 0 { + heap.Pop(pq) ans++ } } - return ans + return } type hp struct{ sort.IntSlice } func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) } func (h *hp) Pop() any { - a := h.IntSlice - v := a[len(a)-1] - h.IntSlice = a[:len(a)-1] + n := len(h.IntSlice) + v := h.IntSlice[n-1] + h.IntSlice = h.IntSlice[:n-1] return v } func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] } ``` +#### TypeScript + +```ts +function maxEvents(events: number[][]): number { + const g: Map = new Map(); + let l = Infinity, + r = 0; + for (const [s, e] of events) { + if (!g.has(s)) g.set(s, []); + g.get(s)!.push(e); + l = Math.min(l, s); + r = Math.max(r, e); + } + + const pq = new MinPriorityQueue (); + let ans = 0; + for (let s = l; s <= r; s++) { + while (!pq.isEmpty() && pq.front() < s) { + pq.dequeue(); + } + for (const e of g.get(s) || []) { + pq.enqueue(e); + } + if (!pq.isEmpty()) { + pq.dequeue(); + ans++; + } + } + return ans; +} +``` + +#### Rust + +```rust +use std::collections::{BinaryHeap, HashMap}; +use std::cmp::Reverse; + +impl Solution { + pub fn max_events(events: Vec >) -> i32 { + let mut g: HashMap > = HashMap::new(); + let mut l = i32::MAX; + let mut r = 0; + + for event in events { + let s = event[0]; + let e = event[1]; + g.entry(s).or_default().push(e); + l = l.min(s); + r = r.max(e); + } + + let mut pq = BinaryHeap::new(); + let mut ans = 0; + + for s in l..=r { + while let Some(&Reverse(top)) = pq.peek() { + if top < s { + pq.pop(); + } else { + break; + } + } + if let Some(ends) = g.get(&s) { + for &e in ends { + pq.push(Reverse(e)); + } + } + if pq.pop().is_some() { + ans += 1; + } + } + + ans + } +} +``` + diff --git a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.cpp b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.cpp index b606f12f54a94..bff232aed16a4 100644 --- a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.cpp +++ b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.cpp @@ -1,28 +1,28 @@ class Solution { public: int maxEvents(vector >& events) { - unordered_map > d; - int i = INT_MAX, j = 0; - for (auto& v : events) { - int s = v[0], e = v[1]; - d[s].push_back(e); - i = min(i, s); - j = max(j, e); + unordered_map > g; + int l = INT_MAX, r = 0; + for (auto& event : events) { + int s = event[0], e = event[1]; + g[s].push_back(e); + l = min(l, s); + r = max(r, e); } - priority_queue , greater > q; + priority_queue , greater > pq; int ans = 0; - for (int s = i; s <= j; ++s) { - while (q.size() && q.top() < s) { - q.pop(); + for (int s = l; s <= r; ++s) { + while (!pq.empty() && pq.top() < s) { + pq.pop(); } - for (int e : d[s]) { - q.push(e); + for (int e : g[s]) { + pq.push(e); } - if (q.size()) { + if (!pq.empty()) { + pq.pop(); ++ans; - q.pop(); } } return ans; } -}; \ No newline at end of file +}; diff --git a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.go b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.go index df48690182d72..1b5722cd4a3a2 100644 --- a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.go +++ b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.go @@ -1,36 +1,37 @@ -func maxEvents(events [][]int) int { - d := map[int][]int{} - i, j := math.MaxInt32, 0 - for _, v := range events { - s, e := v[0], v[1] - d[s] = append(d[s], e) - i = min(i, s) - j = max(j, e) +func maxEvents(events [][]int) (ans int) { + g := map[int][]int{} + l, r := math.MaxInt32, 0 + for _, event := range events { + s, e := event[0], event[1] + g[s] = append(g[s], e) + l = min(l, s) + r = max(r, e) } - q := hp{} - ans := 0 - for s := i; s <= j; s++ { - for q.Len() > 0 && q.IntSlice[0] < s { - heap.Pop(&q) + + pq := &hp{} + heap.Init(pq) + for s := l; s <= r; s++ { + for pq.Len() > 0 && pq.IntSlice[0] < s { + heap.Pop(pq) } - for _, e := range d[s] { - heap.Push(&q, e) + for _, e := range g[s] { + heap.Push(pq, e) } - if q.Len() > 0 { - heap.Pop(&q) + if pq.Len() > 0 { + heap.Pop(pq) ans++ } } - return ans + return } type hp struct{ sort.IntSlice } func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) } func (h *hp) Pop() any { - a := h.IntSlice - v := a[len(a)-1] - h.IntSlice = a[:len(a)-1] + n := len(h.IntSlice) + v := h.IntSlice[n-1] + h.IntSlice = h.IntSlice[:n-1] return v } -func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] } \ No newline at end of file +func (h *hp) Less(i, j int) bool { return h.IntSlice[i] < h.IntSlice[j] } diff --git a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.java b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.java index 55ae438150200..f85ae216d53f4 100644 --- a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.java +++ b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.java @@ -1,27 +1,27 @@ class Solution { public int maxEvents(int[][] events) { - Map > d = new HashMap<>(); - int i = Integer.MAX_VALUE, j = 0; - for (var v : events) { - int s = v[0], e = v[1]; - d.computeIfAbsent(s, k -> new ArrayList<>()).add(e); - i = Math.min(i, s); - j = Math.max(j, e); + Map > g = new HashMap<>(); + int l = Integer.MAX_VALUE, r = 0; + for (int[] event : events) { + int s = event[0], e = event[1]; + g.computeIfAbsent(s, k -> new ArrayList<>()).add(e); + l = Math.min(l, s); + r = Math.max(r, e); } - PriorityQueue q = new PriorityQueue<>(); + PriorityQueue pq = new PriorityQueue<>(); int ans = 0; - for (int s = i; s <= j; ++s) { - while (!q.isEmpty() && q.peek() < s) { - q.poll(); + for (int s = l; s <= r; s++) { + while (!pq.isEmpty() && pq.peek() < s) { + pq.poll(); } - for (int e : d.getOrDefault(s, Collections.emptyList())) { - q.offer(e); + for (int e : g.getOrDefault(s, List.of())) { + pq.offer(e); } - if (!q.isEmpty()) { - q.poll(); - ++ans; + if (!pq.isEmpty()) { + pq.poll(); + ans++; } } return ans; } -} \ No newline at end of file +} diff --git a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.py b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.py index c8f9fd352a5b7..0d32d73265ae6 100644 --- a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.py +++ b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.py @@ -1,19 +1,19 @@ class Solution: def maxEvents(self, events: List[List[int]]) -> int: - d = defaultdict(list) - i, j = inf, 0 + g = defaultdict(list) + l, r = inf, 0 for s, e in events: - d[s].append(e) - i = min(i, s) - j = max(j, e) - h = [] + g[s].append(e) + l = min(l, s) + r = max(r, e) + pq = [] ans = 0 - for s in range(i, j + 1): - while h and h[0] < s: - heappop(h) - for e in d[s]: - heappush(h, e) - if h: + for s in range(l, r + 1): + while pq and pq[0] < s: + heappop(pq) + for e in g[s]: + heappush(pq, e) + if pq: + heappop(pq) ans += 1 - heappop(h) return ans diff --git a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.rs b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.rs new file mode 100644 index 0000000000000..8655f8f45b8c3 --- /dev/null +++ b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.rs @@ -0,0 +1,41 @@ +use std::cmp::Reverse; +use std::collections::{BinaryHeap, HashMap}; + +impl Solution { + pub fn max_events(events: Vec >) -> i32 { + let mut g: HashMap > = HashMap::new(); + let mut l = i32::MAX; + let mut r = 0; + + for event in events { + let s = event[0]; + let e = event[1]; + g.entry(s).or_default().push(e); + l = l.min(s); + r = r.max(e); + } + + let mut pq = BinaryHeap::new(); + let mut ans = 0; + + for s in l..=r { + while let Some(&Reverse(top)) = pq.peek() { + if top < s { + pq.pop(); + } else { + break; + } + } + if let Some(ends) = g.get(&s) { + for &e in ends { + pq.push(Reverse(e)); + } + } + if pq.pop().is_some() { + ans += 1; + } + } + + ans + } +} diff --git a/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.ts b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.ts new file mode 100644 index 0000000000000..fe09e3bbc62a7 --- /dev/null +++ b/solution/1300-1399/1353.Maximum Number of Events That Can Be Attended/Solution.ts @@ -0,0 +1,27 @@ +function maxEvents(events: number[][]): number { + const g: Map = new Map(); + let l = Infinity, + r = 0; + for (const [s, e] of events) { + if (!g.has(s)) g.set(s, []); + g.get(s)!.push(e); + l = Math.min(l, s); + r = Math.max(r, e); + } + + const pq = new MinPriorityQueue (); + let ans = 0; + for (let s = l; s <= r; s++) { + while (!pq.isEmpty() && pq.front() < s) { + pq.dequeue(); + } + for (const e of g.get(s) || []) { + pq.enqueue(e); + } + if (!pq.isEmpty()) { + pq.dequeue(); + ans++; + } + } + return ans; +} diff --git a/solution/1300-1399/1354.Construct Target Array With Multiple Sums/README.md b/solution/1300-1399/1354.Construct Target Array With Multiple Sums/README.md index 67cd7338f7ab9..92d70c41f8ff3 100644 --- a/solution/1300-1399/1354.Construct Target Array With Multiple Sums/README.md +++ b/solution/1300-1399/1354.Construct Target Array With Multiple Sums/README.md @@ -198,14 +198,14 @@ func (hp) Push(any) {} ```ts function isPossible(target: number[]): boolean { - const pq = new MaxPriorityQueue(); + const pq = new MaxPriorityQueue (); let s = 0; for (const x of target) { s += x; pq.enqueue(x); } - while (pq.front().element > 1) { - const mx = pq.dequeue().element; + while (pq.front() > 1) { + const mx = pq.dequeue(); const t = s - mx; if (t < 1 || mx - t < 1) { return false; diff --git a/solution/1300-1399/1354.Construct Target Array With Multiple Sums/README_EN.md b/solution/1300-1399/1354.Construct Target Array With Multiple Sums/README_EN.md index 46c3cefe4351d..1add677cba9f6 100644 --- a/solution/1300-1399/1354.Construct Target Array With Multiple Sums/README_EN.md +++ b/solution/1300-1399/1354.Construct Target Array With Multiple Sums/README_EN.md @@ -199,14 +199,14 @@ func (hp) Push(any) {} ```ts function isPossible(target: number[]): boolean { - const pq = new MaxPriorityQueue(); + const pq = new MaxPriorityQueue (); let s = 0; for (const x of target) { s += x; pq.enqueue(x); } - while (pq.front().element > 1) { - const mx = pq.dequeue().element; + while (pq.front() > 1) { + const mx = pq.dequeue(); const t = s - mx; if (t < 1 || mx - t < 1) { return false; diff --git a/solution/1300-1399/1354.Construct Target Array With Multiple Sums/Solution.ts b/solution/1300-1399/1354.Construct Target Array With Multiple Sums/Solution.ts index 144be716e511b..30f3e9d27db06 100644 --- a/solution/1300-1399/1354.Construct Target Array With Multiple Sums/Solution.ts +++ b/solution/1300-1399/1354.Construct Target Array With Multiple Sums/Solution.ts @@ -1,12 +1,12 @@ function isPossible(target: number[]): boolean { - const pq = new MaxPriorityQueue(); + const pq = new MaxPriorityQueue (); let s = 0; for (const x of target) { s += x; pq.enqueue(x); } - while (pq.front().element > 1) { - const mx = pq.dequeue().element; + while (pq.front() > 1) { + const mx = pq.dequeue(); const t = s - mx; if (t < 1 || mx - t < 1) { return false; diff --git a/solution/1300-1399/1375.Number of Times Binary String Is Prefix-Aligned/README_EN.md b/solution/1300-1399/1375.Number of Times Binary String Is Prefix-Aligned/README_EN.md index 85728f8ff86c4..6ee738a4c99d0 100644 --- a/solution/1300-1399/1375.Number of Times Binary String Is Prefix-Aligned/README_EN.md +++ b/solution/1300-1399/1375.Number of Times Binary String Is Prefix-Aligned/README_EN.md @@ -18,7 +18,7 @@ tags: - You have a 1-indexed binary string of length
+n
where all the bits are0
initially. We will flip all the bits of this binary string (i.e., change them from0
to1
) one by one. You are given a 1-indexed integer arrayflips
whereflips[i]
indicates that the bit at indexi
will be flipped in theith
step.You have a 1-indexed binary string of length
n
where all the bits are0
initially. We will flip all the bits of this binary string (i.e., change them from0
to1
) one by one. You are given a 1-indexed integer arrayflips
whereflips[i]
indicates that the bit at indexflips[i]
will be flipped in theith
step.A binary string is prefix-aligned if, after the
diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/README.md b/solution/1300-1399/1394.Find Lucky Integer in an Array/README.md index ad8e3171ec677..e2aab03d4d2ff 100644 --- a/solution/1300-1399/1394.Find Lucky Integer in an Array/README.md +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/README.md @@ -81,9 +81,9 @@ tags: ### 方法一:计数 -我们可以用哈希表或数组 $cnt$ 统计 $arr$ 中每个数字出现的次数,然后遍历 $cnt$,找到满足 $cnt[x] = x$ 的最大的 $x$ 即可。如果没有这样的 $x$,则返回 $-1$。 +我们可以用哈希表或数组 $\textit{cnt}$ 统计 $\textit{arr}$ 中每个数字出现的次数,然后遍历 $\textit{cnt}$,找到满足 $\textit{cnt}[x] = x$ 的最大的 $x$ 即可。如果没有这样的 $x$,则返回 $-1$。 -时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为 $arr$ 的长度。 +时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为 $\textit{arr}$ 的长度。 @@ -93,11 +93,7 @@ tags: class Solution: def findLucky(self, arr: List[int]) -> int: cnt = Counter(arr) - ans = -1 - for x, v in cnt.items(): - if x == v and ans < x: - ans = x - return ans + return max((x for x, v in cnt.items() if x == v), default=-1) ``` #### Java @@ -105,17 +101,16 @@ class Solution: ```java class Solution { public int findLucky(int[] arr) { - int[] cnt = new int[510]; - for (int x : cnt) { + int[] cnt = new int[501]; + for (int x : arr) { ++cnt[x]; } - int ans = -1; - for (int x = 1; x < cnt.length; ++x) { - if (cnt[x] == x) { - ans = x; + for (int x = cnt.length - 1; x > 0; --x) { + if (x == cnt[x]) { + return x; } } - return ans; + return -1; } } ``` @@ -126,18 +121,16 @@ class Solution { class Solution { public: int findLucky(vectorith
step, all the bits in the inclusive range[1, i]
are ones and all the other bits are zeros.& arr) { - int cnt[510]; - memset(cnt, 0, sizeof(cnt)); + int cnt[501]{}; for (int x : arr) { ++cnt[x]; } - int ans = -1; - for (int x = 1; x < 510; ++x) { - if (cnt[x] == x) { - ans = x; + for (int x = 500; x; --x) { + if (x == cnt[x]) { + return x; } } - return ans; + return -1; } }; ``` @@ -146,17 +139,16 @@ public: ```go func findLucky(arr []int) int { - cnt := [510]int{} + cnt := [501]int{} for _, x := range arr { cnt[x]++ } - ans := -1 - for x := 1; x < len(cnt); x++ { - if cnt[x] == x { - ans = x + for x := len(cnt) - 1; x > 0; x-- { + if x == cnt[x] { + return x } } - return ans + return -1 } ``` @@ -164,17 +156,34 @@ func findLucky(arr []int) int { ```ts function findLucky(arr: number[]): number { - const cnt = Array(510).fill(0); + const cnt: number[] = Array(501).fill(0); for (const x of arr) { ++cnt[x]; } - let ans = -1; - for (let x = 1; x < cnt.length; ++x) { - if (cnt[x] === x) { - ans = x; + for (let x = cnt.length - 1; x; --x) { + if (x === cnt[x]) { + return x; } } - return ans; + return -1; +} +``` + +#### Rust + +```rust +use std::collections::HashMap; + +impl Solution { + pub fn find_lucky(arr: Vec ) -> i32 { + let mut cnt = HashMap::new(); + arr.iter().for_each(|&x| *cnt.entry(x).or_insert(0) += 1); + cnt.iter() + .filter(|(&x, &v)| x == v) + .map(|(&x, _)| x) + .max() + .unwrap_or(-1) + } } ``` @@ -187,17 +196,16 @@ class Solution { * @return Integer */ function findLucky($arr) { - $max = -1; - for ($i = 0; $i < count($arr); $i++) { - $hashtable[$arr[$i]] += 1; + $cnt = array_fill(0, 501, 0); + foreach ($arr as $x) { + $cnt[$x]++; } - $keys = array_keys($hashtable); - for ($j = 0; $j < count($keys); $j++) { - if ($hashtable[$keys[$j]] == $keys[$j]) { - $max = max($max, $keys[$j]); + for ($x = 500; $x > 0; $x--) { + if ($cnt[$x] === $x) { + return $x; } } - return $max; + return -1; } } ``` diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/README_EN.md b/solution/1300-1399/1394.Find Lucky Integer in an Array/README_EN.md index 0150e92bf8adf..cf0c8ede706fc 100644 --- a/solution/1300-1399/1394.Find Lucky Integer in an Array/README_EN.md +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/README_EN.md @@ -65,9 +65,9 @@ tags: ### Solution 1: Counting -We can use a hash table or array $cnt$ to count the occurrences of each number in $arr$, then traverse $cnt$ to find the largest $x$ that satisfies $cnt[x] = x$. If there is no such $x$, return $-1$. +We can use a hash table or an array $\textit{cnt}$ to count the occurrences of each number in $\textit{arr}$. Then, we iterate through $\textit{cnt}$ to find the largest $x$ such that $\textit{cnt}[x] = x$. If there is no such $x$, return $-1$. -The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is the length of $arr$. +The time complexity is $O(n)$, and the space complexity is $O(n)$, where $n$ is the length of the $\textit{arr}$. @@ -77,11 +77,7 @@ The time complexity is $O(n)$, and the space complexity is $O(n)$. Where $n$ is class Solution: def findLucky(self, arr: List[int]) -> int: cnt = Counter(arr) - ans = -1 - for x, v in cnt.items(): - if x == v and ans < x: - ans = x - return ans + return max((x for x, v in cnt.items() if x == v), default=-1) ``` #### Java @@ -89,17 +85,16 @@ class Solution: ```java class Solution { public int findLucky(int[] arr) { - int[] cnt = new int[510]; - for (int x : cnt) { + int[] cnt = new int[501]; + for (int x : arr) { ++cnt[x]; } - int ans = -1; - for (int x = 1; x < cnt.length; ++x) { - if (cnt[x] == x) { - ans = x; + for (int x = cnt.length - 1; x > 0; --x) { + if (x == cnt[x]) { + return x; } } - return ans; + return -1; } } ``` @@ -110,18 +105,16 @@ class Solution { class Solution { public: int findLucky(vector & arr) { - int cnt[510]; - memset(cnt, 0, sizeof(cnt)); + int cnt[501]{}; for (int x : arr) { ++cnt[x]; } - int ans = -1; - for (int x = 1; x < 510; ++x) { - if (cnt[x] == x) { - ans = x; + for (int x = 500; x; --x) { + if (x == cnt[x]) { + return x; } } - return ans; + return -1; } }; ``` @@ -130,17 +123,16 @@ public: ```go func findLucky(arr []int) int { - cnt := [510]int{} + cnt := [501]int{} for _, x := range arr { cnt[x]++ } - ans := -1 - for x := 1; x < len(cnt); x++ { - if cnt[x] == x { - ans = x + for x := len(cnt) - 1; x > 0; x-- { + if x == cnt[x] { + return x } } - return ans + return -1 } ``` @@ -148,17 +140,34 @@ func findLucky(arr []int) int { ```ts function findLucky(arr: number[]): number { - const cnt = Array(510).fill(0); + const cnt: number[] = Array(501).fill(0); for (const x of arr) { ++cnt[x]; } - let ans = -1; - for (let x = 1; x < cnt.length; ++x) { - if (cnt[x] === x) { - ans = x; + for (let x = cnt.length - 1; x; --x) { + if (x === cnt[x]) { + return x; } } - return ans; + return -1; +} +``` + +#### Rust + +```rust +use std::collections::HashMap; + +impl Solution { + pub fn find_lucky(arr: Vec ) -> i32 { + let mut cnt = HashMap::new(); + arr.iter().for_each(|&x| *cnt.entry(x).or_insert(0) += 1); + cnt.iter() + .filter(|(&x, &v)| x == v) + .map(|(&x, _)| x) + .max() + .unwrap_or(-1) + } } ``` @@ -171,17 +180,16 @@ class Solution { * @return Integer */ function findLucky($arr) { - $max = -1; - for ($i = 0; $i < count($arr); $i++) { - $hashtable[$arr[$i]] += 1; + $cnt = array_fill(0, 501, 0); + foreach ($arr as $x) { + $cnt[$x]++; } - $keys = array_keys($hashtable); - for ($j = 0; $j < count($keys); $j++) { - if ($hashtable[$keys[$j]] == $keys[$j]) { - $max = max($max, $keys[$j]); + for ($x = 500; $x > 0; $x--) { + if ($cnt[$x] === $x) { + return $x; } } - return $max; + return -1; } } ``` diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.cpp b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.cpp index fc249af1dfb56..bd184b1b614af 100644 --- a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.cpp +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.cpp @@ -1,17 +1,15 @@ class Solution { public: int findLucky(vector & arr) { - int cnt[510]; - memset(cnt, 0, sizeof(cnt)); + int cnt[501]{}; for (int x : arr) { ++cnt[x]; } - int ans = -1; - for (int x = 1; x < 510; ++x) { - if (cnt[x] == x) { - ans = x; + for (int x = 500; x; --x) { + if (x == cnt[x]) { + return x; } } - return ans; + return -1; } }; \ No newline at end of file diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.go b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.go index c7cc0cf11c3d8..2065349fea7da 100644 --- a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.go +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.go @@ -1,13 +1,12 @@ func findLucky(arr []int) int { - cnt := [510]int{} + cnt := [501]int{} for _, x := range arr { cnt[x]++ } - ans := -1 - for x := 1; x < len(cnt); x++ { - if cnt[x] == x { - ans = x + for x := len(cnt) - 1; x > 0; x-- { + if x == cnt[x] { + return x } } - return ans + return -1 } \ No newline at end of file diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.java b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.java index b46b186230051..e032656eb678a 100644 --- a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.java +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.java @@ -1,15 +1,14 @@ class Solution { public int findLucky(int[] arr) { - int[] cnt = new int[510]; - for (int x : cnt) { + int[] cnt = new int[501]; + for (int x : arr) { ++cnt[x]; } - int ans = -1; - for (int x = 1; x < cnt.length; ++x) { - if (cnt[x] == x) { - ans = x; + for (int x = cnt.length - 1; x > 0; --x) { + if (x == cnt[x]) { + return x; } } - return ans; + return -1; } } \ No newline at end of file diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.php b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.php index 978bf0079a7ce..d75690dce4b15 100644 --- a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.php +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.php @@ -4,16 +4,15 @@ class Solution { * @return Integer */ function findLucky($arr) { - $max = -1; - for ($i = 0; $i < count($arr); $i++) { - $hashtable[$arr[$i]] += 1; + $cnt = array_fill(0, 501, 0); + foreach ($arr as $x) { + $cnt[$x]++; } - $keys = array_keys($hashtable); - for ($j = 0; $j < count($keys); $j++) { - if ($hashtable[$keys[$j]] == $keys[$j]) { - $max = max($max, $keys[$j]); + for ($x = 500; $x > 0; $x--) { + if ($cnt[$x] === $x) { + return $x; } } - return $max; + return -1; } -} +} \ No newline at end of file diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.py b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.py index 1c1d2594cc4e6..d374650ec8dab 100644 --- a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.py +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.py @@ -1,8 +1,4 @@ class Solution: def findLucky(self, arr: List[int]) -> int: cnt = Counter(arr) - ans = -1 - for x, v in cnt.items(): - if x == v and ans < x: - ans = x - return ans + return max((x for x, v in cnt.items() if x == v), default=-1) diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.rs b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.rs new file mode 100644 index 0000000000000..89dbef71a7a4d --- /dev/null +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.rs @@ -0,0 +1,13 @@ +use std::collections::HashMap; + +impl Solution { + pub fn find_lucky(arr: Vec ) -> i32 { + let mut cnt = HashMap::new(); + arr.iter().for_each(|&x| *cnt.entry(x).or_insert(0) += 1); + cnt.iter() + .filter(|(&x, &v)| x == v) + .map(|(&x, _)| x) + .max() + .unwrap_or(-1) + } +} diff --git a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.ts b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.ts index 2effea7d2bc38..719deeeba14a6 100644 --- a/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.ts +++ b/solution/1300-1399/1394.Find Lucky Integer in an Array/Solution.ts @@ -1,13 +1,12 @@ function findLucky(arr: number[]): number { - const cnt = Array(510).fill(0); + const cnt: number[] = Array(501).fill(0); for (const x of arr) { ++cnt[x]; } - let ans = -1; - for (let x = 1; x < cnt.length; ++x) { - if (cnt[x] === x) { - ans = x; + for (let x = cnt.length - 1; x; --x) { + if (x === cnt[x]) { + return x; } } - return ans; + return -1; } diff --git a/solution/1400-1499/1412.Find the Quiet Students in All Exams/README_EN.md b/solution/1400-1499/1412.Find the Quiet Students in All Exams/README_EN.md index a4a1d7cc7a00c..ab9f361afba34 100644 --- a/solution/1400-1499/1412.Find the Quiet Students in All Exams/README_EN.md +++ b/solution/1400-1499/1412.Find the Quiet Students in All Exams/README_EN.md @@ -93,7 +93,7 @@ Exam table: Explanation: For exam 1: Student 1 and 3 hold the lowest and high scores respectively. For exam 2: Student 1 hold both highest and lowest score. -For exam 3 and 4: Studnet 1 and 4 hold the lowest and high scores respectively. +For exam 3 and 4: Student 1 and 4 hold the lowest and high scores respectively. Student 2 and 5 have never got the highest or lowest in any of the exams. Since student 5 is not taking any exam, he is excluded from the result. So, we only return the information of Student 2. diff --git a/solution/1400-1499/1418.Display Table of Food Orders in a Restaurant/README_EN.md b/solution/1400-1499/1418.Display Table of Food Orders in a Restaurant/README_EN.md index 809ec164c6da3..dd6bc86d1a53a 100644 --- a/solution/1400-1499/1418.Display Table of Food Orders in a Restaurant/README_EN.md +++ b/solution/1400-1499/1418.Display Table of Food Orders in a Restaurant/README_EN.md @@ -27,48 +27,77 @@ tags: Return the restaurant's “display table”. The “display table” is a table whose row entries denote how many of each food item each table ordered. The first column is the table number and the remaining columns correspond to each food item in alphabetical order. The first row should be a header whose first column is “Table”, followed by the names of the food items. Note that the customer names are not part of the table. Additionally, the rows should be sorted in numerically increasing order.
+
Example 1:
+ Input: orders = [["David","3","Ceviche"],["Corina","10","Beef Burrito"],["David","3","Fried Chicken"],["Carla","5","Water"],["Carla","5","Ceviche"],["Rous","3","Ceviche"]] + Output: [["Table","Beef Burrito","Ceviche","Fried Chicken","Water"],["3","0","2","1","0"],["5","0","1","0","1"],["10","1","0","0","0"]] + Explanation: + The displaying table looks like: + Table,Beef Burrito,Ceviche,Fried Chicken,Water + 3 ,0 ,2 ,1 ,0 + 5 ,0 ,1 ,0 ,1 + 10 ,1 ,0 ,0 ,0 + For the table 3: David orders "Ceviche" and "Fried Chicken", and Rous orders "Ceviche". + For the table 5: Carla orders "Water" and "Ceviche". + For the table 10: Corina orders "Beef Burrito". +Example 2:
+ Input: orders = [["James","12","Fried Chicken"],["Ratesh","12","Fried Chicken"],["Amadeus","12","Fried Chicken"],["Adam","1","Canadian Waffles"],["Brianna","1","Canadian Waffles"]] + Output: [["Table","Canadian Waffles","Fried Chicken"],["1","2","0"],["12","0","3"]] + Explanation: + For the table 1: Adam and Brianna order "Canadian Waffles". + For the table 12: James, Ratesh and Amadeus order "Fried Chicken". +Example 3:
+ Input: orders = [["Laura","2","Bean Burrito"],["Jhon","2","Beef Burrito"],["Melissa","2","Soda"]] + Output: [["Table","Bean Burrito","Beef Burrito","Soda"],["2","1","1","1"]] ++
Constraints:
-
diff --git a/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/README.md b/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/README.md index 2d6da8186663c..d8bc71a7ce113 100644 --- a/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/README.md +++ b/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/README.md @@ -31,7 +31,7 @@ tags:- -
1 <= orders.length <= 5 * 10^4
- -
orders[i].length == 3
- -
1 <= customerNamei.length, foodItemi.length <= 20
- -
customerNamei
andfoodItemi
consist of lowercase and uppercase English letters and the space character.- + +
tableNumberi
is a valid integer between1
and500
.- + +
1 <= orders.length <= 5 * 10^4
- + +
orders[i].length == 3
- + +
1 <= customerNamei.length, foodItemi.length <= 20
- + +
customerNamei
andfoodItemi
consist of lowercase and uppercase English letters and the space character.- +
tableNumberi
is a valid integer between1
and500
.请你返回
-a
和b
的 最大差值 。注意,新的整数(
+a
或b
)必须不能 含有前导 0,并且 非 0。注意,
a
和b
必须不能 含有前导 0,并且 不为 0。@@ -94,13 +94,13 @@ tags: 要想得到最大差值,那么我们应该拿到最大值与最小值,这样差值最大。 -因此,我们先从高到低枚举 $nums$ 每个位置上的数,如果数字不为 `9`,就将所有该数字替换为 `9`,得到最大整数 $a$。 +因此,我们先从高到低枚举 $\textit{nums}$ 每个位置上的数,如果数字不为 `9`,就将所有该数字替换为 `9`,得到最大整数 $a$。 -接下来,我们再从高到低枚举 `nums` 每个位置上的数,首位不能为 `0`,因此如果首位不为 `1`,我们将其替换为 `1`;如果非首位,且数字不与首位相同,我们将其替换为 `0`,得到最大整数 $b$。 +接下来,我们再从高到低枚举 $\textit{nums}$ 每个位置上的数,首位不能为 `0`,因此如果首位不为 `1`,我们将其替换为 `1`;如果非首位,且数字不与首位相同,我们将其替换为 `0`,得到最大整数 $b$。 答案为差值 $a - b$。 -时间复杂度 $O(\log num)$,空间复杂度 $O(\log num)$。其中 $num$ 为给定整数。 +时间复杂度 $O(\log \textit{num})$,空间复杂度 $O(\log \textit{num})$。其中 $\textit{nums}$ 为给定整数。 @@ -214,6 +214,65 @@ func maxDiff(num int) int { } ``` +#### TypeScript + +```ts +function maxDiff(num: number): number { + let a = num.toString(); + let b = a; + for (let i = 0; i < a.length; ++i) { + if (a[i] !== '9') { + a = a.split(a[i]).join('9'); + break; + } + } + if (b[0] !== '1') { + b = b.split(b[0]).join('1'); + } else { + for (let i = 1; i < b.length; ++i) { + if (b[i] !== '0' && b[i] !== '1') { + b = b.split(b[i]).join('0'); + break; + } + } + } + return +a - +b; +} +``` + +#### Rust + +```rust +impl Solution { + pub fn max_diff(num: i32) -> i32 { + let a = num.to_string(); + let mut a = a.clone(); + let mut b = a.clone(); + + for c in a.chars() { + if c != '9' { + a = a.replace(c, "9"); + break; + } + } + + let chars: Vec
= b.chars().collect(); + if chars[0] != '1' { + b = b.replace(chars[0], "1"); + } else { + for &c in &chars[1..] { + if c != '0' && c != '1' { + b = b.replace(c, "0"); + break; + } + } + } + + a.parse:: ().unwrap() - b.parse:: ().unwrap() + } +} +``` + diff --git a/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/README_EN.md b/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/README_EN.md index d31d01cb1c408..2aad266c5b7ff 100644 --- a/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/README_EN.md +++ b/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/README_EN.md @@ -19,7 +19,7 @@ tags: - You are given an integer
+num
. You will apply the following steps tonums
two times independently:You are given an integer
num
. You will apply the following steps tonum
two separate times:
- Pick a digit
@@ -31,7 +31,7 @@ tags:x (0 <= x <= 9)
.Return the max difference between
-a
andb
.Note that the new integer (either
+a
orb
) must not have any leading zeros, and it must not be 0.Note that neither
a
norb
may have any leading zeros, and must not be 0.
Example 1:
@@ -67,7 +67,17 @@ We have now a = 9 and b = 1 and max difference = 8 -### Solution 1 +### Solution 1: Greedy + +To obtain the maximum difference, we should take the maximum and minimum values, as this yields the largest difference. + +Therefore, we first enumerate each digit in $\textit{nums}$ from high to low. If a digit is not `9`, we replace all occurrences of that digit with `9` to obtain the maximum integer $a$. + +Next, we enumerate each digit in $\textit{nums}$ from high to low again. The first digit cannot be `0`, so if the first digit is not `1`, we replace it with `1`; for non-leading digits that are different from the first digit, we replace them with `0` to obtain the minimum integer $b$. + +The answer is the difference $a - b$. + +The time complexity is $O(\log \textit{num})$, and the space complexity is $O(\log \textit{num})$, where $\textit{nums}$ is the given integer. @@ -181,6 +191,65 @@ func maxDiff(num int) int { } ``` +#### TypeScript + +```ts +function maxDiff(num: number): number { + let a = num.toString(); + let b = a; + for (let i = 0; i < a.length; ++i) { + if (a[i] !== '9') { + a = a.split(a[i]).join('9'); + break; + } + } + if (b[0] !== '1') { + b = b.split(b[0]).join('1'); + } else { + for (let i = 1; i < b.length; ++i) { + if (b[i] !== '0' && b[i] !== '1') { + b = b.split(b[i]).join('0'); + break; + } + } + } + return +a - +b; +} +``` + +#### Rust + +```rust +impl Solution { + pub fn max_diff(num: i32) -> i32 { + let a = num.to_string(); + let mut a = a.clone(); + let mut b = a.clone(); + + for c in a.chars() { + if c != '9' { + a = a.replace(c, "9"); + break; + } + } + + let chars: Vec= b.chars().collect(); + if chars[0] != '1' { + b = b.replace(chars[0], "1"); + } else { + for &c in &chars[1..] { + if c != '0' && c != '1' { + b = b.replace(c, "0"); + break; + } + } + } + + a.parse:: ().unwrap() - b.parse:: ().unwrap() + } +} +``` + diff --git a/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/Solution.rs b/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/Solution.rs new file mode 100644 index 0000000000000..17cbc4f0dd6bc --- /dev/null +++ b/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/Solution.rs @@ -0,0 +1,28 @@ +impl Solution { + pub fn max_diff(num: i32) -> i32 { + let a = num.to_string(); + let mut a = a.clone(); + let mut b = a.clone(); + + for c in a.chars() { + if c != '9' { + a = a.replace(c, "9"); + break; + } + } + + let chars: Vec = b.chars().collect(); + if chars[0] != '1' { + b = b.replace(chars[0], "1"); + } else { + for &c in &chars[1..] { + if c != '0' && c != '1' { + b = b.replace(c, "0"); + break; + } + } + } + + a.parse:: ().unwrap() - b.parse:: ().unwrap() + } +} diff --git a/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/Solution.ts b/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/Solution.ts new file mode 100644 index 0000000000000..b83ebad41364b --- /dev/null +++ b/solution/1400-1499/1432.Max Difference You Can Get From Changing an Integer/Solution.ts @@ -0,0 +1,21 @@ +function maxDiff(num: number): number { + let a = num.toString(); + let b = a; + for (let i = 0; i < a.length; ++i) { + if (a[i] !== '9') { + a = a.split(a[i]).join('9'); + break; + } + } + if (b[0] !== '1') { + b = b.split(b[0]).join('1'); + } else { + for (let i = 1; i < b.length; ++i) { + if (b[i] !== '0' && b[i] !== '1') { + b = b.split(b[i]).join('0'); + break; + } + } + } + return +a - +b; +} diff --git a/solution/1400-1499/1441.Build an Array With Stack Operations/README.md b/solution/1400-1499/1441.Build an Array With Stack Operations/README.md index 40a72da78f311..e2a66d57660c2 100644 --- a/solution/1400-1499/1441.Build an Array With Stack Operations/README.md +++ b/solution/1400-1499/1441.Build an Array With Stack Operations/README.md @@ -20,19 +20,26 @@ tags: - 给你一个数组
+target
和一个整数n
。每次迭代,需要从list = { 1 , 2 , 3 ..., n }
中依次读取一个数字。给你一个数组
-target
和一个整数n
。请使用下述操作来构建目标数组
+target
:给你一个空栈和两种操作:
-
-- -
"Push"
:从list
中读取一个新元素, 并将其推入数组中。- -
"Pop"
:删除数组中的最后一个元素。- 如果目标数组构建完成,就停止读取更多元素。
+- +
"Push"
:将一个整数加到栈顶。"Pop"
:从栈顶删除一个整数。题目数据保证目标数组严格递增,并且只包含
+1
到n
之间的数字。同时给定一个范围
-[1, n]
中的整数流。请返回构建目标数组所用的操作序列。如果存在多个可行方案,返回任一即可。
+使用两个栈操作使栈中的数字(从底部到顶部)等于
+ +target
。你应该遵循以下规则:+
+ +- 如果整数流不为空,从流中选取下一个整数并将其推送到栈顶。
+- 如果栈不为空,弹出栈顶的整数。
+- 如果,在任何时刻,栈中的元素(从底部到顶部)等于
+target
,则不要从流中读取新的整数,也不要对栈进行更多操作。请返回遵循上述规则构建
target
所用的操作序列。如果存在多个合法答案,返回 任一 即可。@@ -41,10 +48,11 @@ tags:
输入:target = [1,3], n = 3 输出:["Push","Push","Pop","Push"] -解释: -读取 1 并自动推入数组 -> [1] -读取 2 并自动推入数组,然后删除它 -> [1] -读取 3 并自动推入数组 -> [1,3] +解释:一开始栈为空。最后一个元素是栈顶。 +从流中读取 1 并推入数组 -> [1] +从流中读取 2 并推入数组 -> [1,2] +从栈顶删除整数 -> [1] +从流中读取 3 并推入数组 -> [1,3]示例 2:
@@ -52,6 +60,10 @@ tags:输入:target = [1,2,3], n = 3 输出:["Push","Push","Push"] +解释:一开始栈为空。最后一个元素是栈顶。 +从流中读取 1 并推入数组 -> [1] +从流中读取 2 并推入数组 -> [1,2] +从流中读取 3 并推入数组 -> [1,2,3]示例 3:
@@ -59,7 +71,11 @@ tags:输入:target = [1,2], n = 4 输出:["Push","Push"] -解释:只需要读取前 2 个数字就可以停止。 +解释:一开始栈为空。最后一个元素是栈顶。 +从流中读取 1 并推入数组 -> [1] +从流中读取 2 并推入数组 -> [1,2] +由于栈(从底部到顶部)等于 target,我们停止栈操作。 +从流中读取整数 3 的答案不被接受。diff --git a/solution/1400-1499/1448.Count Good Nodes in Binary Tree/README_EN.md b/solution/1400-1499/1448.Count Good Nodes in Binary Tree/README_EN.md index 75f9d52c74990..4a07c72b0b946 100644 --- a/solution/1400-1499/1448.Count Good Nodes in Binary Tree/README_EN.md +++ b/solution/1400-1499/1448.Count Good Nodes in Binary Tree/README_EN.md @@ -26,17 +26,25 @@ tags:
Return the number of good nodes in the binary tree.
+
Example 1:
+ Input: root = [3,1,4,3,null,1,5] + Output: 4 + Explanation: Nodes in blue are good. + Root Node (3) is always a good node. + Node 4 -> (3,4) is the maximum value in the path starting from the root. + Node 5 -> (3,4,5) is the maximum value in the path + Node 3 -> (3,1,3) is the maximum value in the path.Example 2:
@@ -44,23 +52,33 @@ Node 3 -> (3,1,3) is the maximum value in the path.
+ Input: root = [3,3,null,4,2] + Output: 3 + Explanation: Node 2 -> (3, 3, 2) is not good, because "3" is higher than it.Example 3:
+ Input: root = [1] + Output: 1 + Explanation: Root is considered as good.+
Constraints:
-
diff --git a/solution/1400-1499/1470.Shuffle the Array/README_EN.md b/solution/1400-1499/1470.Shuffle the Array/README_EN.md index 9246c35a92d80..8a806cd3fd73d 100644 --- a/solution/1400-1499/1470.Shuffle the Array/README_EN.md +++ b/solution/1400-1499/1470.Shuffle the Array/README_EN.md @@ -23,35 +23,51 @@ tags:- The number of nodes in the binary tree is in the range
-[1, 10^5]
.- Each node's value is between
+ +[-10^4, 10^4]
.- The number of nodes in the binary tree is in the range
+ +[1, 10^5]
.- Each node's value is between
+[-10^4, 10^4]
.Return the array in the form
[x1,y1,x2,y2,...,xn,yn]
.+
Example 1:
+ Input: nums = [2,5,1,3,4,7], n = 3 + Output: [2,3,5,4,1,7] + Explanation: Since x1=2, x2=5, x3=1, y1=3, y2=4, y3=7 then the answer is [2,3,5,4,1,7]. +Example 2:
+ Input: nums = [1,2,3,4,4,3,2,1], n = 4 + Output: [1,4,2,3,3,2,4,1] +Example 3:
+ Input: nums = [1,1,2,2], n = 2 + Output: [1,2,1,2] ++
Constraints:
-
diff --git a/solution/1400-1499/1481.Least Number of Unique Integers after K Removals/README_EN.md b/solution/1400-1499/1481.Least Number of Unique Integers after K Removals/README_EN.md index 00dee15fada33..d367cf0458c18 100644 --- a/solution/1400-1499/1481.Least Number of Unique Integers after K Removals/README_EN.md +++ b/solution/1400-1499/1481.Least Number of Unique Integers after K Removals/README_EN.md @@ -25,31 +25,45 @@ tags:- -
1 <= n <= 500
- -
nums.length == 2n
- + +
1 <= nums[i] <= 10^3
- + +
1 <= n <= 500
- + +
nums.length == 2n
- +
1 <= nums[i] <= 10^3
Given an array of integers
arr
and an integerk
. Find the least number of unique integers after removing exactlyk
elements.+
+
Example 1:
+ Input: arr = [5,5,4], k = 1 + Output: 1 + Explanation: Remove the single 4, only 5 is left. +Example 2:+ Input: arr = [4,3,1,1,3,3,2], k = 3 + Output: 2 + Explanation: Remove 4, 2 and either one of the two 1s or three 3s. 1 and 3 will be left.+
Constraints:
-
diff --git a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/README.md b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/README.md index e6ace5471b0df..238ee9e8a551f 100644 --- a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/README.md +++ b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/README.md @@ -74,13 +74,13 @@ tags: -### 方法一:排序 + 枚举贡献 + 二分查找 +### 方法一:排序 + 二分查找 -由于题目中描述的是子序列,并且涉及到最小元素与最大元素的和,因此我们可以先对数组 `nums` 进行排序。 +由于题目中描述的是子序列,并且涉及到最小元素与最大元素的和,因此我们可以先对数组 $\textit{nums}$ 进行排序。 -然后我们枚举最小元素 $nums[i]$,对于每个 $nums[i]$,我们可以在 $nums[i + 1]$ 到 $nums[n - 1]$ 中找到最大元素 $nums[j]$,使得 $nums[i] + nums[j] \leq target$,此时满足条件的子序列数目为 $2^{j - i}$,其中 $2^{j - i}$ 表示从 $nums[i + 1]$ 到 $nums[j]$ 的所有子序列的数目。我们将所有的子序列数目累加即可。 +然后我们枚举最小元素 $\textit{nums}[i]$,对于每个 $\textit{nums}[i]$,我们可以在 $\textit{nums}[i + 1]$ 到 $\textit{nums}[n - 1]$ 中找到最大元素 $\textit{nums}[j]$,使得 $\textit{nums}[i] + \textit{nums}[j] \leq \textit{target}$,此时满足条件的子序列数目为 $2^{j - i}$,其中 $2^{j - i}$ 表示从 $\textit{nums}[i + 1]$ 到 $\textit{nums}[j]$ 的所有子序列的数目。我们将所有的子序列数目累加即可。 -时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 `nums` 的长度。 +时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $\textit{nums}$ 的长度。 @@ -118,10 +118,7 @@ class Solution { f[i] = (f[i - 1] * 2) % mod; } int ans = 0; - for (int i = 0; i < n; ++i) { - if (nums[i] * 2L > target) { - break; - } + for (int i = 0; i < n && nums[i] * 2 <= target; ++i) { int j = search(nums, target - nums[i], i + 1) - 1; ans = (ans + f[j - i]) % mod; } @@ -158,10 +155,7 @@ public: f[i] = (f[i - 1] * 2) % mod; } int ans = 0; - for (int i = 0; i < n; ++i) { - if (nums[i] * 2L > target) { - break; - } + for (int i = 0; i < n && nums[i] * 2 <= target; ++i) { int j = upper_bound(nums.begin() + i + 1, nums.end(), target - nums[i]) - nums.begin() - 1; ans = (ans + f[j - i]) % mod; } @@ -193,6 +187,77 @@ func numSubseq(nums []int, target int) (ans int) { } ``` +#### TypeScript + +```ts +function numSubseq(nums: number[], target: number): number { + nums.sort((a, b) => a - b); + const mod = 1e9 + 7; + const n = nums.length; + const f: number[] = Array(n + 1).fill(1); + for (let i = 1; i <= n; ++i) { + f[i] = (f[i - 1] * 2) % mod; + } + + let ans = 0; + for (let i = 0; i < n && nums[i] * 2 <= target; ++i) { + const j = search(nums, target - nums[i], i + 1) - 1; + if (j >= i) { + ans = (ans + f[j - i]) % mod; + } + } + return ans; +} + +function search(nums: number[], x: number, left: number): number { + let right = nums.length; + while (left < right) { + const mid = (left + right) >> 1; + if (nums[mid] > x) { + right = mid; + } else { + left = mid + 1; + } + } + return left; +} +``` + +#### Rust + +```rust +impl Solution { + pub fn num_subseq(mut nums: Vec- -
1 <= arr.length <= 10^5
- -
1 <= arr[i] <= 10^9
- + +
0 <= k <= arr.length
- + +
1 <= arr.length <= 10^5
- + +
1 <= arr[i] <= 10^9
- +
0 <= k <= arr.length
, target: i32) -> i32 { + nums.sort(); + const MOD: i32 = 1_000_000_007; + let n = nums.len(); + let mut f = vec![1; n + 1]; + for i in 1..=n { + f[i] = (f[i - 1] * 2) % MOD; + } + let mut ans = 0; + for i in 0..n { + if nums[i] * 2 > target { + break; + } + let mut l = i + 1; + let mut r = n; + while l < r { + let m = (l + r) / 2; + if nums[m] > target - nums[i] { + r = m; + } else { + l = m + 1; + } + } + let j = l - 1; + ans = (ans + f[j - i]) % MOD; + } + ans + } +} +``` + diff --git a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/README_EN.md b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/README_EN.md index 82d339744f91b..9e42491529171 100644 --- a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/README_EN.md +++ b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/README_EN.md @@ -71,7 +71,13 @@ Number of valid subsequences (63 - 2 = 61). -### Solution 1 +### Solution 1: Sorting + Binary Search + +Since the problem is about subsequences and involves the sum of the minimum and maximum elements, we can first sort the array $\textit{nums}$. + +Then we enumerate the minimum element $\textit{nums}[i]$. For each $\textit{nums}[i]$, we can find the maximum element $\textit{nums}[j]$ in $\textit{nums}[i + 1]$ to $\textit{nums}[n - 1]$ such that $\textit{nums}[i] + \textit{nums}[j] \leq \textit{target}$. The number of valid subsequences in this case is $2^{j - i}$, where $2^{j - i}$ represents all possible subsequences from $\textit{nums}[i + 1]$ to $\textit{nums}[j]$. We sum up the counts of all such subsequences. + +The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$, where $n$ is the length of the array $\textit{nums}$. @@ -109,10 +115,7 @@ class Solution { f[i] = (f[i - 1] * 2) % mod; } int ans = 0; - for (int i = 0; i < n; ++i) { - if (nums[i] * 2L > target) { - break; - } + for (int i = 0; i < n && nums[i] * 2 <= target; ++i) { int j = search(nums, target - nums[i], i + 1) - 1; ans = (ans + f[j - i]) % mod; } @@ -149,10 +152,7 @@ public: f[i] = (f[i - 1] * 2) % mod; } int ans = 0; - for (int i = 0; i < n; ++i) { - if (nums[i] * 2L > target) { - break; - } + for (int i = 0; i < n && nums[i] * 2 <= target; ++i) { int j = upper_bound(nums.begin() + i + 1, nums.end(), target - nums[i]) - nums.begin() - 1; ans = (ans + f[j - i]) % mod; } @@ -184,6 +184,77 @@ func numSubseq(nums []int, target int) (ans int) { } ``` +#### TypeScript + +```ts +function numSubseq(nums: number[], target: number): number { + nums.sort((a, b) => a - b); + const mod = 1e9 + 7; + const n = nums.length; + const f: number[] = Array(n + 1).fill(1); + for (let i = 1; i <= n; ++i) { + f[i] = (f[i - 1] * 2) % mod; + } + + let ans = 0; + for (let i = 0; i < n && nums[i] * 2 <= target; ++i) { + const j = search(nums, target - nums[i], i + 1) - 1; + if (j >= i) { + ans = (ans + f[j - i]) % mod; + } + } + return ans; +} + +function search(nums: number[], x: number, left: number): number { + let right = nums.length; + while (left < right) { + const mid = (left + right) >> 1; + if (nums[mid] > x) { + right = mid; + } else { + left = mid + 1; + } + } + return left; +} +``` + +#### Rust + +```rust +impl Solution { + pub fn num_subseq(mut nums: Vec , target: i32) -> i32 { + nums.sort(); + const MOD: i32 = 1_000_000_007; + let n = nums.len(); + let mut f = vec![1; n + 1]; + for i in 1..=n { + f[i] = (f[i - 1] * 2) % MOD; + } + let mut ans = 0; + for i in 0..n { + if nums[i] * 2 > target { + break; + } + let mut l = i + 1; + let mut r = n; + while l < r { + let m = (l + r) / 2; + if nums[m] > target - nums[i] { + r = m; + } else { + l = m + 1; + } + } + let j = l - 1; + ans = (ans + f[j - i]) % MOD; + } + ans + } +} +``` + diff --git a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.cpp b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.cpp index 4c4d4dc630bac..f599d59527261 100644 --- a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.cpp +++ b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.cpp @@ -10,10 +10,7 @@ class Solution { f[i] = (f[i - 1] * 2) % mod; } int ans = 0; - for (int i = 0; i < n; ++i) { - if (nums[i] * 2L > target) { - break; - } + for (int i = 0; i < n && nums[i] * 2 <= target; ++i) { int j = upper_bound(nums.begin() + i + 1, nums.end(), target - nums[i]) - nums.begin() - 1; ans = (ans + f[j - i]) % mod; } diff --git a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.java b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.java index 73cd951a7968b..d5ceb81f59e9f 100644 --- a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.java +++ b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.java @@ -9,10 +9,7 @@ public int numSubseq(int[] nums, int target) { f[i] = (f[i - 1] * 2) % mod; } int ans = 0; - for (int i = 0; i < n; ++i) { - if (nums[i] * 2L > target) { - break; - } + for (int i = 0; i < n && nums[i] * 2 <= target; ++i) { int j = search(nums, target - nums[i], i + 1) - 1; ans = (ans + f[j - i]) % mod; } diff --git a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.rs b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.rs new file mode 100644 index 0000000000000..7e07c8502443a --- /dev/null +++ b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.rs @@ -0,0 +1,30 @@ +impl Solution { + pub fn num_subseq(mut nums: Vec , target: i32) -> i32 { + nums.sort(); + const MOD: i32 = 1_000_000_007; + let n = nums.len(); + let mut f = vec![1; n + 1]; + for i in 1..=n { + f[i] = (f[i - 1] * 2) % MOD; + } + let mut ans = 0; + for i in 0..n { + if nums[i] * 2 > target { + break; + } + let mut l = i + 1; + let mut r = n; + while l < r { + let m = (l + r) / 2; + if nums[m] > target - nums[i] { + r = m; + } else { + l = m + 1; + } + } + let j = l - 1; + ans = (ans + f[j - i]) % MOD; + } + ans + } +} diff --git a/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.ts b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.ts new file mode 100644 index 0000000000000..e05c6d19d421c --- /dev/null +++ b/solution/1400-1499/1498.Number of Subsequences That Satisfy the Given Sum Condition/Solution.ts @@ -0,0 +1,31 @@ +function numSubseq(nums: number[], target: number): number { + nums.sort((a, b) => a - b); + const mod = 1e9 + 7; + const n = nums.length; + const f: number[] = Array(n + 1).fill(1); + for (let i = 1; i <= n; ++i) { + f[i] = (f[i - 1] * 2) % mod; + } + + let ans = 0; + for (let i = 0; i < n && nums[i] * 2 <= target; ++i) { + const j = search(nums, target - nums[i], i + 1) - 1; + if (j >= i) { + ans = (ans + f[j - i]) % mod; + } + } + return ans; +} + +function search(nums: number[], x: number, left: number): number { + let right = nums.length; + while (left < right) { + const mid = (left + right) >> 1; + if (nums[mid] > x) { + right = mid; + } else { + left = mid + 1; + } + } + return left; +} diff --git a/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/README.md b/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/README.md index f84db1a2762b3..27fb4be1e91f3 100644 --- a/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/README.md +++ b/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/README.md @@ -75,6 +75,14 @@ tags: 解释: 该示例属于第三种情况,节点 p 不在节点 q 的子树中,反之亦然。我们可以移动节点 3 及其子树,使之成为节点 8 的子节点。 示例 4:
++
+输入:root = [1,null,2,3,null,4], p = 1, q = 4 +输出:[4,null,1,null,2,3] +解释:该示例属于第一种情况,因为节点 q 在节点 p 的子树中。断开节点 4 与其父节点,并将节点 1 及其子树移动,使其成为节点 4 的子节点。 ++
提示:
diff --git a/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/README_EN.md b/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/README_EN.md index e0bb9b5768ef2..d1141fca6d308 100644 --- a/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/README_EN.md +++ b/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/README_EN.md @@ -68,6 +68,14 @@ Notice that node 4 is the last child of node 1.
Example 4:
++Input: root = [1,null,2,3,null,4], p = 1, q = 4 +Output: [4,null,1,null,2,3] +Explanation: This example follows case 1 because node q is in the sub-tree of node p. Disconnect 4 with its parent and move node 1 with its sub-tree and make it as node 4's child. ++
Constraints:
diff --git a/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/images/untitled-diagramdrawio.png b/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/images/untitled-diagramdrawio.png new file mode 100644 index 0000000000000..3daaaf9e87ae7 Binary files /dev/null and b/solution/1500-1599/1516.Move Sub-Tree of N-Ary Tree/images/untitled-diagramdrawio.png differ diff --git a/solution/1500-1599/1517.Find Users With Valid E-Mails/README.md b/solution/1500-1599/1517.Find Users With Valid E-Mails/README.md index ddda78859db1a..8ca76e3ff3e2e 100644 --- a/solution/1500-1599/1517.Find Users With Valid E-Mails/README.md +++ b/solution/1500-1599/1517.Find Users With Valid E-Mails/README.md @@ -37,7 +37,7 @@ user_id 是该表的主键(具有唯一值的列)。一个有效的电子邮件具有前缀名称和域,其中:
'_'
,点 '.'
和/或破折号 '-'
。前缀名称 必须 以字母开头。'_'
,点 '.'
和(或)破折号 '-'
。前缀名称 必须 以字母开头。'@leetcode.com'
。Given two non-negative integers low
and high
. Return the count of odd numbers between low
and high
(inclusive).
+
Example 1:
+ Input: low = 3, high = 7 + Output: 3 + Explanation: The odd numbers between 3 and 7 are [3,5,7].
Example 2:
+ Input: low = 8, high = 10 + Output: 1 + Explanation: The odd numbers between 8 and 10 are [9].
+
Constraints:
0 <= low <= high <= 10^9
0 <= low <= high <= 10^9
A triplet (arr[i], arr[j], arr[k])
is good if the following conditions are true:
0 <= i < j < k < arr.length
|arr[i] - arr[j]| <= a
|arr[j] - arr[k]| <= b
|arr[i] - arr[k]| <= c
0 <= i < j < k < arr.length
|arr[i] - arr[j]| <= a
|arr[j] - arr[k]| <= b
|arr[i] - arr[k]| <= c
Where |x|
denotes the absolute value of x
.
Return the number of good triplets.
+
Example 1:
+ Input: arr = [3,0,1,1,9,7], a = 7, b = 2, c = 3 + Output: 4 + Explanation: There are 4 good triplets: [(3,0,1), (3,0,1), (3,1,1), (0,1,1)]. +
Example 2:
+ Input: arr = [1,1,2,2,3], a = 0, b = 0, c = 1 + Output: 0 + Explanation: No triplet satisfies all conditions. +
+
Constraints:
3 <= arr.length <= 100
0 <= arr[i] <= 1000
0 <= a, b, c <= 1000
3 <= arr.length <= 100
0 <= arr[i] <= 1000
0 <= a, b, c <= 1000
示例 1:
-输入:stoneValue = [6,2,3,4,5,5] ++输入:stoneValue = [6,2,3,4,5,5] 输出:18 解释:在第一轮中,Alice 将行划分为 [6,2,3],[4,5,5] 。左行的值是 11 ,右行的值是 14 。Bob 丢弃了右行,Alice 的分数现在是 11 。 在第二轮中,Alice 将行分成 [6],[2,3] 。这一次 Bob 扔掉了左行,Alice 的分数变成了 16(11 + 5)。 @@ -42,13 +43,15 @@ tags:示例 2:
-输入:stoneValue = [7,7,7,7,7,7,7] ++输入:stoneValue = [7,7,7,7,7,7,7] 输出:28示例 3:
-输入:stoneValue = [4] ++输入:stoneValue = [4] 输出:0@@ -58,7 +61,7 @@ tags:
1 <= stoneValue.length <= 500
1 <= stoneValue[i] <= 10^6
1 <= stoneValue[i] <= 106
In each round of the game, Alice divides the row into two non-empty rows (i.e. left row and right row), then Bob calculates the value of each row which is the sum of the values of all the stones in this row. Bob throws away the row which has the maximum value, and Alice's score increases by the value of the remaining row. If the value of the two rows are equal, Bob lets Alice decide which row will be thrown away. The next round starts with the remaining row.
-The game ends when there is only one stone remaining. Alice's is initially zero.
+The game ends when there is only one stone remaining. Alice's score is initially zero.
Return the maximum score that Alice can obtain.
diff --git a/solution/1600-1699/1617.Count Subtrees With Max Distance Between Cities/README_EN.md b/solution/1600-1699/1617.Count Subtrees With Max Distance Between Cities/README_EN.md index 58a5aa233655e..a39d7dd0a4861 100644 --- a/solution/1600-1699/1617.Count Subtrees With Max Distance Between Cities/README_EN.md +++ b/solution/1600-1699/1617.Count Subtrees With Max Distance Between Cities/README_EN.md @@ -33,42 +33,63 @@ tags:Notice that the distance between the two cities is the number of edges in the path between them.
+
Example 1:
+ Input: n = 4, edges = [[1,2],[2,3],[2,4]] + Output: [3,4,0] + Explanation: + The subtrees with subsets {1,2}, {2,3} and {2,4} have a max distance of 1. + The subtrees with subsets {1,2,3}, {1,2,4}, {2,3,4} and {1,2,3,4} have a max distance of 2. + No subtree has two nodes where the max distance between them is 3. +
Example 2:
+ Input: n = 2, edges = [[1,2]] + Output: [1] +
Example 3:
+ Input: n = 3, edges = [[1,2],[2,3]] + Output: [2,1] +
+
Constraints:
2 <= n <= 15
edges.length == n-1
edges[i].length == 2
1 <= ui, vi <= n
(ui, vi)
are distinct.2 <= n <= 15
edges.length == n-1
edges[i].length == 2
1 <= ui, vi <= n
(ui, vi)
are distinct.The FontInfo
interface is defined as such:
+ interface FontInfo { + // Returns the width of character ch on the screen using font size fontSize. + // O(1) per call + public int getWidth(int fontSize, char ch); + + // Returns the height of any character on the screen using font size fontSize. + // O(1) per call + public int getHeight(int fontSize); + }
The calculated width of text
for some fontSize
is the sum of every getWidth(fontSize, text[i])
call for each 0 <= i < text.length
(0-indexed). The calculated height of text
for some fontSize
is getHeight(fontSize)
. Note that text
is displayed on a single line.
It is also guaranteed that for any font size fontSize
and any character ch
:
getHeight(fontSize) <= getHeight(fontSize+1)
getWidth(fontSize, ch) <= getWidth(fontSize+1, ch)
getHeight(fontSize) <= getHeight(fontSize+1)
getWidth(fontSize, ch) <= getWidth(fontSize+1, ch)
Return the maximum font size you can use to display text
on the screen. If text
cannot fit on the display with any font size, return -1
.
+
Example 1:
+ Input: text = "helloworld", w = 80, h = 20, fonts = [6,8,10,12,14,16,18,24,36] + Output: 6 +
Example 2:
+ Input: text = "leetcode", w = 1000, h = 50, fonts = [1,2,4] + Output: 4 +
Example 3:
+ Input: text = "easyquestion", w = 100, h = 100, fonts = [10,15,20,25] + Output: -1 +
+
Constraints:
1 <= text.length <= 50000
text
contains only lowercase English letters.1 <= w <= 107
1 <= h <= 104
1 <= fonts.length <= 105
1 <= fonts[i] <= 105
fonts
is sorted in ascending order and does not contain duplicates.1 <= text.length <= 50000
text
contains only lowercase English letters.1 <= w <= 107
1 <= h <= 104
1 <= fonts.length <= 105
1 <= fonts[i] <= 105
fonts
is sorted in ascending order and does not contain duplicates.Each node has three attributes:
coefficient
: an integer representing the number multiplier of the term. The coefficient of the term 9x4
is 9
.power
: an integer representing the exponent. The power of the term 9x4
is 4
.next
: a pointer to the next node in the list, or null
if it is the last node of the list.coefficient
: an integer representing the number multiplier of the term. The coefficient of the term 9x4
is 9
.power
: an integer representing the exponent. The power of the term 9x4
is 4
.next
: a pointer to the next node in the list, or null
if it is the last node of the list.For example, the polynomial 5x3 + 4x - 7
is represented by the polynomial linked list illustrated below:
The input/output format is as a list of n
nodes, where each node is represented as its [coefficient, power]
. For example, the polynomial 5x3 + 4x - 7
would be represented as: [[5,3],[4,1],[-7,0]]
.
+
Example 1:
+ Input: poly1 = [[1,1]], poly2 = [[1,0]] + Output: [[1,1],[1,0]] + Explanation: poly1 = x. poly2 = 1. The sum is x + 1. +
Example 2:
+ Input: poly1 = [[2,2],[4,1],[3,0]], poly2 = [[3,2],[-4,1],[-1,0]] + Output: [[5,2],[2,0]] + Explanation: poly1 = 2x2 + 4x + 3. poly2 = 3x2 - 4x - 1. The sum is 5x2 + 2. Notice that we omit the "0x" term. +
Example 3:
+ Input: poly1 = [[1,2]], poly2 = [[-1,2]] + Output: [] + Explanation: The sum is 0. We return an empty list. +
+
Constraints:
0 <= n <= 104
-109 <= PolyNode.coefficient <= 109
PolyNode.coefficient != 0
0 <= PolyNode.power <= 109
PolyNode.power > PolyNode.next.power
0 <= n <= 104
-109 <= PolyNode.coefficient <= 109
PolyNode.coefficient != 0
0 <= PolyNode.power <= 109
PolyNode.power > PolyNode.next.power
Given an integer array instructions
, you are asked to create a sorted array from the elements in instructions
. You start with an empty container nums
. For each element from left to right in instructions
, insert it into nums
. The cost of each insertion is the minimum of the following:
nums
that are strictly less than instructions[i]
.nums
that are strictly greater than instructions[i]
.nums
that are strictly less than instructions[i]
.nums
that are strictly greater than instructions[i]
.For example, if inserting element 3
into nums = [1,2,3,5]
, the cost of insertion is min(2, 1)
(elements 1
and 2
are less than 3
, element 5
is greater than 3
) and nums
will become [1,2,3,3,5]
.
Return the total cost to insert all elements from instructions
into nums
. Since the answer may be large, return it modulo 109 + 7
+
Example 1:
+ Input: instructions = [1,5,6,2] + Output: 1 + Explanation: Begin with nums = []. + Insert 1 with cost min(0, 0) = 0, now nums = [1]. + Insert 5 with cost min(1, 0) = 0, now nums = [1,5]. + Insert 6 with cost min(2, 0) = 0, now nums = [1,5,6]. + Insert 2 with cost min(1, 2) = 1, now nums = [1,2,5,6]. + The total cost is 0 + 0 + 0 + 1 = 1.
Example 2:
+ Input: instructions = [1,2,3,6,5,4] + Output: 3 + Explanation: Begin with nums = []. + Insert 1 with cost min(0, 0) = 0, now nums = [1]. + Insert 2 with cost min(1, 0) = 0, now nums = [1,2]. + Insert 3 with cost min(2, 0) = 0, now nums = [1,2,3]. + Insert 6 with cost min(3, 0) = 0, now nums = [1,2,3,6]. + Insert 5 with cost min(3, 1) = 1, now nums = [1,2,3,5,6]. + Insert 4 with cost min(3, 2) = 2, now nums = [1,2,3,4,5,6]. + The total cost is 0 + 0 + 0 + 0 + 1 + 2 = 3. +
Example 3:
+ Input: instructions = [1,3,3,3,2,4,2,1,2] + Output: 4 + Explanation: Begin with nums = []. + Insert 1 with cost min(0, 0) = 0, now nums = [1]. + Insert 3 with cost min(1, 0) = 0, now nums = [1,3]. + Insert 3 with cost min(1, 0) = 0, now nums = [1,3,3]. + Insert 3 with cost min(1, 0) = 0, now nums = [1,3,3,3]. + Insert 2 with cost min(1, 3) = 1, now nums = [1,2,3,3,3]. + Insert 4 with cost min(5, 0) = 0, now nums = [1,2,3,3,3,4]. + Insert 2 with cost min(1, 4) = 1, now nums = [1,2,2,3,3,3,4]. + Insert 1 with cost min(0, 6) = 0, now nums = [1,1,2,2,3,3,3,4]. + Insert 2 with cost min(2, 4) = 2, now nums = [1,1,2,2,2,3,3,3,4]. + The total cost is 0 + 0 + 0 + 0 + 1 + 0 + 1 + 0 + 2 = 4. +
+
Constraints:
1 <= instructions.length <= 105
1 <= instructions[i] <= 105
1 <= instructions.length <= 105
1 <= instructions[i] <= 105
The test input is read as 3 lines:
TreeNode root
int fromNode
(not available to correctBinaryTree
)int toNode
(not available to correctBinaryTree
)TreeNode root
int fromNode
(not available to correctBinaryTree
)int toNode
(not available to correctBinaryTree
)After the binary tree rooted at root
is parsed, the TreeNode
with value of fromNode
will have its right child pointer pointing to the TreeNode
with a value of toNode
. Then, root
is passed to correctBinaryTree
.
+
Example 1:
+ Input: root = [1,2,3], fromNode = 2, toNode = 3 + Output: [1,null,3] + Explanation: The node with value 2 is invalid, so remove it. +
Example 2:
@@ -52,22 +61,35 @@ tags:+ Input: root = [8,3,1,7,null,9,4,2,null,null,null,5,6], fromNode = 7, toNode = 4 + Output: [8,3,1,null,null,9,4,null,null,5,6] + Explanation: The node with value 7 is invalid, so remove it and the node underneath it, node 2. +
+
Constraints:
[3, 104]
.-109 <= Node.val <= 109
Node.val
are unique.fromNode != toNode
fromNode
and toNode
will exist in the tree and will be on the same depth.toNode
is to the right of fromNode
.fromNode.right
is null
in the initial tree from the test data.[3, 104]
.-109 <= Node.val <= 109
Node.val
are unique.fromNode != toNode
fromNode
and toNode
will exist in the tree and will be on the same depth.toNode
is to the right of fromNode
.fromNode.right
is null
in the initial tree from the test data.Return the number of rectangles that can make a square with a side length of maxLen
.
+
Example 1:
+ Input: rectangles = [[5,8],[3,9],[5,12],[16,5]] + Output: 3 + Explanation: The largest squares you can get from each rectangle are of lengths [5,3,5,5]. + The largest possible square is of length 5, and you can get it out of 3 rectangles. +
Example 2:
+ Input: rectangles = [[2,3],[3,7],[4,3],[3,7]] + Output: 3 +
+
Constraints:
1 <= rectangles.length <= 1000
rectangles[i].length == 2
1 <= li, wi <= 109
li != wi
1 <= rectangles.length <= 1000
rectangles[i].length == 2
1 <= li, wi <= 109
li != wi
Return the maximum possible subarray sum after exactly one operation. The subarray must be non-empty.
+
Example 1:
+ Input: nums = [2,-1,-4,-3] + Output: 17 + Explanation: You can perform the operation on index 2 (0-indexed) to make nums = [2,-1,16,-3]. Now, the maximum subarray sum is 2 + -1 + 16 = 17.
Example 2:
+ Input: nums = [1,-1,1,1,-1,-1,1] + Output: 4 + Explanation: You can perform the operation on index 1 (0-indexed) to make nums = [1,1,1,1,-1,-1,1]. Now, the maximum subarray sum is 1 + 1 + 1 + 1 = 4.
+
Constraints:
1 <= nums.length <= 105
-104 <= nums[i] <= 104
1 <= nums.length <= 105
-104 <= nums[i] <= 104
示例 2:
diff --git a/solution/1700-1799/1752.Check if Array Is Sorted and Rotated/README_EN.md b/solution/1700-1799/1752.Check if Array Is Sorted and Rotated/README_EN.md index a9302e2480207..c4aaccde44fc3 100644 --- a/solution/1700-1799/1752.Check if Array Is Sorted and Rotated/README_EN.md +++ b/solution/1700-1799/1752.Check if Array Is Sorted and Rotated/README_EN.md @@ -31,7 +31,7 @@ tags: Input: nums = [3,4,5,1,2] Output: true Explanation: [1,2,3,4,5] is the original sorted array. -You can rotate the array by x = 3 positions to begin on the element of value 3: [3,4,5,1,2]. +You can rotate the array by x = 2 positions to begin on the element of value 3: [3,4,5,1,2].Example 2:
@@ -51,24 +51,6 @@ You can rotate the array by x = 3 positions to begin on the element of value 3: You can rotate the array by x = 0 positions (i.e. no rotation) to make nums. -
Constraints:
diff --git a/solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/README.md b/solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/README.md index 90006eafe2d23..46700b4c52b25 100644 --- a/solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/README.md +++ b/solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/README.md @@ -6,6 +6,7 @@ rating: 2005 source: 第 228 场周赛 Q4 tags: - 图 + - 枚举 --- diff --git a/solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/README_EN.md b/solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/README_EN.md index 5fef7b1a02c31..6b78026063035 100644 --- a/solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/README_EN.md +++ b/solution/1700-1799/1761.Minimum Degree of a Connected Trio in a Graph/README_EN.md @@ -6,6 +6,7 @@ rating: 2005 source: Weekly Contest 228 Q4 tags: - Graph + - Enumeration --- diff --git a/solution/1700-1799/1768.Merge Strings Alternately/README_EN.md b/solution/1700-1799/1768.Merge Strings Alternately/README_EN.md index 28ec43946435a..23f19bc99a475 100644 --- a/solution/1700-1799/1768.Merge Strings Alternately/README_EN.md +++ b/solution/1700-1799/1768.Merge Strings Alternately/README_EN.md @@ -24,45 +24,71 @@ tags:Return the merged string.
+
Example 1:
+ Input: word1 = "abc", word2 = "pqr" + Output: "apbqcr" + Explanation: The merged string will be merged as so: + word1: a b c + word2: p q r + merged: a p b q c r +
Example 2:
+ Input: word1 = "ab", word2 = "pqrs" + Output: "apbqrs" + Explanation: Notice that as word2 is longer, "rs" is appended to the end. + word1: a b + word2: p q r s + merged: a p b q r s +
Example 3:
+ Input: word1 = "abcd", word2 = "pq" + Output: "apbqcd" + Explanation: Notice that as word1 is longer, "cd" is appended to the end. + word1: a b c d + word2: p q + merged: a p b q c d +
+
Constraints:
1 <= word1.length, word2.length <= 100
word1
and word2
consist of lowercase English letters.1 <= word1.length, word2.length <= 100
word1
and word2
consist of lowercase English letters.A garden is valid if it meets these conditions:
As the appointed gardener, you have the ability to remove any (possibly none) flowers from the garden. You want to remove flowers in a way that makes the remaining garden valid. The beauty of the garden is the sum of the beauty of all the remaining flowers.
@@ -33,36 +36,53 @@ tags:Return the maximum possible beauty of some valid garden after you have removed any (possibly none) flowers.
+
Example 1:
+ Input: flowers = [1,2,3,1,2] + Output: 8 + Explanation: You can produce the valid garden [2,3,1,2] to have a total beauty of 2 + 3 + 1 + 2 = 8.
Example 2:
+ Input: flowers = [100,1,1,-3,1] + Output: 3 + Explanation: You can produce the valid garden [1,1,1] to have a total beauty of 1 + 1 + 1 = 3. +
Example 3:
+ Input: flowers = [-1,-2,0,-1] + Output: -2 + Explanation: You can produce the valid garden [-1,-1] to have a total beauty of -1 + -1 = -2. +
+
Constraints:
2 <= flowers.length <= 105
-104 <= flowers[i] <= 104
2 <= flowers.length <= 105
-104 <= flowers[i] <= 104
You are given a 2D integer array orders
, where each orders[i] = [pricei, amounti, orderTypei]
denotes that amounti
orders have been placed of type orderTypei
at the price pricei
. The orderTypei
is:
0
if it is a batch of buy
orders, or1
if it is a batch of sell
orders.0
if it is a batch of buy
orders, or1
if it is a batch of sell
orders.Note that orders[i]
represents a batch of amounti
independent orders with the same price and order type. All orders represented by orders[i]
will be placed before all orders represented by orders[i+1]
for all valid i
.
There is a backlog that consists of orders that have not been executed. The backlog is initially empty. When an order is placed, the following happens:
buy
order, you look at the sell
order with the smallest price in the backlog. If that sell
order's price is smaller than or equal to the current buy
order's price, they will match and be executed, and that sell
order will be removed from the backlog. Else, the buy
order is added to the backlog.sell
order, you look at the buy
order with the largest price in the backlog. If that buy
order's price is larger than or equal to the current sell
order's price, they will match and be executed, and that buy
order will be removed from the backlog. Else, the sell
order is added to the backlog.buy
order, you look at the sell
order with the smallest price in the backlog. If that sell
order's price is smaller than or equal to the current buy
order's price, they will match and be executed, and that sell
order will be removed from the backlog. Else, the buy
order is added to the backlog.sell
order, you look at the buy
order with the largest price in the backlog. If that buy
order's price is larger than or equal to the current sell
order's price, they will match and be executed, and that buy
order will be removed from the backlog. Else, the sell
order is added to the backlog.Return the total amount of orders in the backlog after placing all the orders from the input. Since this number can be large, return it modulo 109 + 7
.
+
Example 1:
++ Input: orders = [[10,5,0],[15,2,1],[25,1,1],[30,4,0]] + Output: 6 + Explanation: Here is what happens with the orders: + - 5 orders of type buy with price 10 are placed. There are no sell orders, so the 5 orders are added to the backlog. + - 2 orders of type sell with price 15 are placed. There are no buy orders with prices larger than or equal to 15, so the 2 orders are added to the backlog. + - 1 order of type sell with price 25 is placed. There are no buy orders with prices larger than or equal to 25 in the backlog, so this order is added to the backlog. + - 4 orders of type buy with price 30 are placed. The first 2 orders are matched with the 2 sell orders of the least price, which is 15 and these 2 sell orders are removed from the backlog. The 3rd order is matched with the sell order of the least price, which is 25 and this sell order is removed from the backlog. Then, there are no more sell orders in the backlog, so the 4th order is added to the backlog. + Finally, the backlog has 5 buy orders with price 10, and 1 buy order with price 30. So the total number of orders in the backlog is 6. +
Example 2:
++ Input: orders = [[7,1000000000,1],[15,3,0],[5,999999995,0],[5,1,1]] + Output: 999999984 + Explanation: Here is what happens with the orders: + - 109 orders of type sell with price 7 are placed. There are no buy orders, so the 109 orders are added to the backlog. + - 3 orders of type buy with price 15 are placed. They are matched with the 3 sell orders with the least price which is 7, and those 3 sell orders are removed from the backlog. + - 999999995 orders of type buy with price 5 are placed. The least price of a sell order is 7, so the 999999995 orders are added to the backlog. + - 1 order of type sell with price 5 is placed. It is matched with the buy order of the highest price, which is 5, and that buy order is removed from the backlog. + Finally, the backlog has (1000000000-3) sell orders with price 7, and (999999995-1) buy orders with price 5. So the total number of orders = 1999999991, which is equal to 999999984 % (109 + 7). +
+
Constraints:
1 <= orders.length <= 105
orders[i].length == 3
1 <= pricei, amounti <= 109
orderTypei
is either 0
or 1
.1 <= orders.length <= 105
orders[i].length == 3
1 <= pricei, amounti <= 109
orderTypei
is either 0
or 1
.A nice pair is a pair (i, j)
where 0 <= i < j < nums.length
and low <= (nums[i] XOR nums[j]) <= high
.
+
Example 1:
+ Input: nums = [1,4,2,7], low = 2, high = 6 + Output: 6 + Explanation: All nice pairs (i, j) are as follows: + - (0, 1): nums[0] XOR nums[1] = 5 + - (0, 2): nums[0] XOR nums[2] = 3 + - (0, 3): nums[0] XOR nums[3] = 6 + - (1, 2): nums[1] XOR nums[2] = 6 + - (1, 3): nums[1] XOR nums[3] = 3 + - (2, 3): nums[2] XOR nums[3] = 5 +
Example 2:
+ Input: nums = [9,8,4,2,1], low = 5, high = 14 + Output: 8 + Explanation: All nice pairs (i, j) are as follows: + - (0, 2): nums[0] XOR nums[2] = 13 + - (0, 3): nums[0] XOR nums[3] = 11 + - (0, 4): nums[0] XOR nums[4] = 8 + - (1, 2): nums[1] XOR nums[2] = 12 + - (1, 3): nums[1] XOR nums[3] = 10 + - (1, 4): nums[1] XOR nums[4] = 9 + - (2, 3): nums[2] XOR nums[3] = 6 + - (2, 4): nums[2] XOR nums[4] = 5
+
Constraints:
1 <= nums.length <= 2 * 104
1 <= nums[i] <= 2 * 104
1 <= low <= high <= 2 * 104
1 <= nums.length <= 2 * 104
1 <= nums[i] <= 2 * 104
1 <= low <= high <= 2 * 104
You are given a positive integer primeFactors
. You are asked to construct a positive integer n
that satisfies the following conditions:
n
(not necessarily distinct) is at most primeFactors
.n
is maximized. Note that a divisor of n
is nice if it is divisible by every prime factor of n
. For example, if n = 12
, then its prime factors are [2,2,3]
, then 6
and 12
are nice divisors, while 3
and 4
are not.Return the number of nice divisors of n
. Since that number can be too large, return it modulo 109 + 7
.
Note that a prime number is a natural number greater than 1
that is not a product of two smaller natural numbers. The prime factors of a number n
is a list of prime numbers such that their product equals n
.
+
Example 1:
+ Input: primeFactors = 5 + Output: 6 + Explanation: 200 is a valid value of n. + It has 5 prime factors: [2,2,2,5,5], and it has 6 nice divisors: [10,20,40,50,100,200]. + There is not other value of n that has at most 5 prime factors and more nice divisors. +
Example 2:
+ Input: primeFactors = 8 + Output: 18 +
+
Constraints:
1 <= primeFactors <= 109
1 <= primeFactors <= 109
You are given an integer array nums
(0-indexed). In one operation, you can choose an element of the array and increment it by 1
.
nums = [1,2,3]
, you can choose to increment nums[1]
to make nums = [1,3,3]
.nums = [1,2,3]
, you can choose to increment nums[1]
to make nums = [1,3,3]
.Return the minimum number of operations needed to make nums
strictly increasing.
An array nums
is strictly increasing if nums[i] < nums[i+1]
for all 0 <= i < nums.length - 1
. An array of length 1
is trivially strictly increasing.
+
Example 1:
+ Input: nums = [1,1,1] + Output: 3 + Explanation: You can do the following operations: + 1) Increment nums[2], so nums becomes [1,1,2]. + 2) Increment nums[1], so nums becomes [1,2,2]. + 3) Increment nums[2], so nums becomes [1,2,3]. +
Example 2:
+ Input: nums = [1,5,2,4,1] + Output: 14 +
Example 3:
+ Input: nums = [8] + Output: 0 +
+
Constraints:
1 <= nums.length <= 5000
1 <= nums[i] <= 104
1 <= nums.length <= 5000
1 <= nums[i] <= 104
Return the linked list after the deletions.
+
Example 1:
++ Input: head = [1,2,3,2] + Output: [1,3] + Explanation: 2 appears twice in the linked list, so all 2's should be deleted. After deleting all 2's, we are left with [1,3]. +
Example 2:
++ Input: head = [2,1,1,2] + Output: [] + Explanation: 2 and 1 both appear twice. All the elements should be deleted. +
Example 3:
++ Input: head = [3,2,2,1,3,2,4] + Output: [1,4] + Explanation: 3 appears twice and 2 appears three times. After deleting all 3's and 2's, we are left with [1,4]. +
+
Constraints:
[1, 105]
1 <= Node.val <= 105
[1, 105]
1 <= Node.val <= 105
There are n
stones arranged in a row. On each player's turn, while the number of stones is more than one, they will do the following:
x > 1
, and remove the leftmost x
stones from the row.x > 1
, and remove the leftmost x
stones from the row.The game stops when only one stone is left in the row.
@@ -39,48 +43,77 @@ tags:Given an integer array stones
of length n
where stones[i]
represents the value of the ith
stone from the left, return the score difference between Alice and Bob if they both play optimally.
+
Example 1:
+ Input: stones = [-1,2,-3,4,-5] + Output: 5 + Explanation: + - Alice removes the first 4 stones, adds (-1) + 2 + (-3) + 4 = 2 to her score, and places a stone of + value 2 on the left. stones = [2,-5]. + - Bob removes the first 2 stones, adds 2 + (-5) = -3 to his score, and places a stone of value -3 on + the left. stones = [-3]. + The difference between their scores is 2 - (-3) = 5. +
Example 2:
+ Input: stones = [7,-6,5,10,5,-2,-6] + Output: 13 + Explanation: + - Alice removes all stones, adds 7 + (-6) + 5 + 10 + 5 + (-2) + (-6) = 13 to her score, and places a + stone of value 13 on the left. stones = [13]. + The difference between their scores is 13 - 0 = 13. +
Example 3:
+ Input: stones = [-10,-12] + Output: -22 + Explanation: + - Alice can only make one move, which is to remove both stones. She adds (-10) + (-12) = -22 to her + score and places a stone of value -22 on the left. stones = [-22]. + The difference between their scores is (-22) - 0 = -22. +
+
Constraints:
n == stones.length
2 <= n <= 105
-104 <= stones[i] <= 104
n == stones.length
2 <= n <= 105
-104 <= stones[i] <= 104
The product sum of two equal-length arrays a
and b
is equal to the sum of a[i] * b[i]
for all 0 <= i < a.length
(0-indexed).
a = [1,2,3,4]
and b = [5,2,3,1]
, the product sum would be 1*5 + 2*2 + 3*3 + 4*1 = 22
.a = [1,2,3,4]
and b = [5,2,3,1]
, the product sum would be 1*5 + 2*2 + 3*3 + 4*1 = 22
.Given two arrays nums1
and nums2
of length n
, return the minimum product sum if you are allowed to rearrange the order of the elements in nums1
.
+
Example 1:
+ Input: nums1 = [5,3,4,2], nums2 = [4,2,2,5] + Output: 40 + Explanation: We can rearrange nums1 to become [3,5,4,2]. The product sum of [3,5,4,2] and [4,2,2,5] is 3*4 + 5*2 + 4*2 + 2*5 = 40. +
Example 2:
+ Input: nums1 = [2,1,4,5,7], nums2 = [3,2,4,8,6] + Output: 65 + Explanation: We can rearrange nums1 to become [5,7,4,1,2]. The product sum of [5,7,4,1,2] and [3,2,4,8,6] is 5*3 + 7*2 + 4*4 + 1*8 + 2*6 = 65. +
+
Constraints:
n == nums1.length == nums2.length
1 <= n <= 105
1 <= nums1[i], nums2[i] <= 100
n == nums1.length == nums2.length
1 <= n <= 105
1 <= nums1[i], nums2[i] <= 100
The pair sum of a pair (a,b)
is equal to a + b
. The maximum pair sum is the largest pair sum in a list of pairs.
(1,5)
, (2,3)
, and (4,4)
, the maximum pair sum would be max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8
.(1,5)
, (2,3)
, and (4,4)
, the maximum pair sum would be max(1+5, 2+3, 4+4) = max(6, 5, 8) = 8
.Given an array nums
of even length n
, pair up the elements of nums
into n / 2
pairs such that:
nums
is in exactly one pair, andnums
is in exactly one pair, andReturn the minimized maximum pair sum after optimally pairing up the elements.
+
Example 1:
+ Input: nums = [3,5,2,3] + Output: 7 + Explanation: The elements can be paired up into pairs (3,3) and (5,2). + The maximum pair sum is max(3+3, 5+2) = max(6, 7) = 7. +
Example 2:
+ Input: nums = [3,5,4,2,4,6] + Output: 8 + Explanation: The elements can be paired up into pairs (3,5), (4,4), and (6,2). + The maximum pair sum is max(3+5, 4+4, 6+2) = max(8, 8, 8) = 8. +
+
Constraints:
n == nums.length
2 <= n <= 105
n
is even.1 <= nums[i] <= 105
n == nums.length
2 <= n <= 105
n
is even.1 <= nums[i] <= 105
The alternating sum of a 0-indexed array is defined as the sum of the elements at even indices minus the sum of the elements at odd indices.
[4,2,5,3]
is (4 + 5) - (2 + 3) = 4
.[4,2,5,3]
is (4 + 5) - (2 + 3) = 4
.Given an array nums
, return the maximum alternating sum of any subsequence of nums
(after reindexing the elements of the subsequence).
A subsequence of an array is a new array generated from the original array by deleting some elements (possibly none) without changing the remaining elements' relative order. For example, [2,7,4]
is a subsequence of [4,2,3,7,2,1,4]
(the underlined elements), while [2,4,2]
is not.
+
Example 1:
+ Input: nums = [4,2,5,3] + Output: 7 + Explanation: It is optimal to choose the subsequence [4,2,5] with alternating sum (4 + 5) - 2 = 7. +
Example 2:
+ Input: nums = [5,6,7,8] + Output: 8 + Explanation: It is optimal to choose the subsequence [8] with alternating sum 8. +
Example 3:
+ Input: nums = [6,2,1,2,4,5] + Output: 10 + Explanation: It is optimal to choose the subsequence [6,1,5] with alternating sum (6 + 5) - 1 = 10. +
+
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 105
1 <= nums.length <= 105
1 <= nums[i] <= 105
The product difference between two pairs (a, b)
and (c, d)
is defined as (a * b) - (c * d)
.
(5, 6)
and (2, 7)
is (5 * 6) - (2 * 7) = 16
.(5, 6)
and (2, 7)
is (5 * 6) - (2 * 7) = 16
.Given an integer array nums
, choose four distinct indices w
, x
, y
, and z
such that the product difference between pairs (nums[w], nums[x])
and (nums[y], nums[z])
is maximized.
Return the maximum such product difference.
+
Example 1:
+ Input: nums = [5,6,2,7,4] + Output: 34 + Explanation: We can choose indices 1 and 3 for the first pair (6, 7) and indices 2 and 4 for the second pair (2, 4). + The product difference is (6 * 7) - (2 * 4) = 34. +
Example 2:
+ Input: nums = [4,2,5,9,7,4,8] + Output: 64 + Explanation: We can choose indices 3 and 6 for the first pair (9, 8) and indices 1 and 5 for the second pair (2, 4). + The product difference is (9 * 8) - (2 * 4) = 64. +
+
Constraints:
4 <= nums.length <= 104
1 <= nums[i] <= 104
4 <= nums.length <= 104
1 <= nums[i] <= 104
A cyclic rotation of the matrix is done by cyclically rotating each layer in the matrix. To cyclically rotate a layer once, each element in the layer will take the place of the adjacent element in the counter-clockwise direction. An example rotation is shown below:
+Return the matrix after applying k
cyclic rotations to it.
+
Example 1:
++ Input: grid = [[40,10],[30,20]], k = 1 + Output: [[10,20],[40,30]] + Explanation: The figures above represent the grid at every state. +
Example 2:
++ Input: grid = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]], k = 2 + Output: [[3,4,8,12],[2,11,10,16],[1,7,6,15],[5,9,13,14]] + Explanation: The figures above represent the grid at every state. +
+
Constraints:
m == grid.length
n == grid[i].length
2 <= m, n <= 50
m
and n
are even integers.1 <= grid[i][j] <= 5000
1 <= k <= 109
m == grid.length
n == grid[i].length
2 <= m, n <= 50
m
and n
are even integers.1 <= grid[i][j] <= 5000
1 <= k <= 109
A wonderful string is a string where at most one letter appears an odd number of times.
"ccjjc"
and "abab"
are wonderful, but "ab"
is not."ccjjc"
and "abab"
are wonderful, but "ab"
is not.Given a string word
that consists of the first ten lowercase English letters ('a'
through 'j'
), return the number of wonderful non-empty substrings in word
. If the same substring appears multiple times in word
, then count each occurrence separately.
A substring is a contiguous sequence of characters in a string.
+
Example 1:
+ Input: word = "aba" + Output: 4 + Explanation: The four wonderful substrings are underlined below: + - "aba" -> "a" + - "aba" -> "b" + - "aba" -> "a" + - "aba" -> "aba" +
Example 2:
+ Input: word = "aabb" + Output: 9 + Explanation: The nine wonderful substrings are underlined below: + - "aabb" -> "a" + - "aabb" -> "aa" + - "aabb" -> "aab" + - "aabb" -> "aabb" + - "aabb" -> "a" + - "aabb" -> "abb" + - "aabb" -> "b" + - "aabb" -> "bb" + - "aabb" -> "b" +
Example 3:
+ Input: word = "he" + Output: 2 + Explanation: The two wonderful substrings are underlined below: + - "he" -> "h" + - "he" -> "e" +
+
Constraints:
1 <= word.length <= 105
word
consists of lowercase English letters from 'a'
to 'j'
.1 <= word.length <= 105
word
consists of lowercase English letters from 'a'
to 'j'
.Return the number of different orders you can build all the rooms in. Since the answer may be large, return it modulo 109 + 7
.
+
Example 1:
++ Input: prevRoom = [-1,0,1] + Output: 1 + Explanation: There is only one way to build the additional rooms: 0 → 1 → 2 +
Example 2:
++ Input: prevRoom = [-1,0,0,1,2] + Output: 6 + Explanation: + The 6 ways are: + 0 → 1 → 3 → 2 → 4 + 0 → 2 → 4 → 1 → 3 + 0 → 1 → 2 → 3 → 4 + 0 → 1 → 2 → 4 → 3 + 0 → 2 → 1 → 3 → 4 + 0 → 2 → 1 → 4 → 3 +
+
Constraints:
n == prevRoom.length
2 <= n <= 105
prevRoom[0] == -1
0 <= prevRoom[i] < n
for all 1 <= i < n
0
once all the rooms are built.n == prevRoom.length
2 <= n <= 105
prevRoom[0] == -1
0 <= prevRoom[i] < n
for all 1 <= i < n
0
once all the rooms are built.给你一个整数数组 piles
,数组 下标从 0 开始 ,其中 piles[i]
表示第 i
堆石子中的石子数量。另给你一个整数 k
,请你执行下述操作 恰好 k
次:
piles[i]
,并从中 移除 ceil(piles[i] / 2)
颗石子。piles[i]
,并从中 移除 floor(piles[i] / 2)
颗石子。注意:你可以对 同一堆 石子多次执行此操作。
返回执行 k
次操作后,剩下石子的 最小 总数。
ceil(x)
为 大于 或 等于 x
的 最小 整数。(即,对 x
向上取整)。
floor(x)
为 小于 或 等于 x
的 最大 整数。(即,对 x
向下取整)。
@@ -180,15 +180,14 @@ func (h *hp) pop() int { return heap.Pop(h).(int) } ```ts function minStoneSum(piles: number[], k: number): number { - const pq = new MaxPriorityQueue(); + const pq = new MaxPriorityQueue
You are given a 0-indexed integer array piles
, where piles[i]
represents the number of stones in the ith
pile, and an integer k
. You should apply the following operation exactly k
times:
piles[i]
and remove ceil(piles[i] / 2)
stones from it.piles[i]
and remove floor(piles[i] / 2)
stones from it.Notice that you can apply the operation on the same pile more than once.
Return the minimum possible total number of stones remaining after applying the k
operations.
ceil(x)
is the smallest integer that is greater than or equal to x
(i.e., rounds x
up).
floor(x)
is the largest integer that is smaller than or equal to x
(i.e., rounds x
down).
Example 1:
@@ -178,15 +178,14 @@ func (h *hp) pop() int { return heap.Pop(h).(int) } ```ts function minStoneSum(piles: number[], k: number): number { - const pq = new MaxPriorityQueue(); + const pq = new MaxPriorityQueuen == s.length
2 <= k <= 2000
2 <= n < k * 8
2 <= n < min(2001, k * 8)
s
由小写英文字母组成n == s.length
2 <= n, k <= 2000
2 <= n < k * 8
2 <= k <= 2000
2 <= n < min(2001, k * 8)
s
consists of lowercase English letters.示例 1:
-输入:s = "7+3*1*2", answers = [20,13,42] ++输入:s = "7+3*1*2", answers = [20,13,42] 输出:7 解释:如上图所示,正确答案为 13 ,因此有一位学生得分为 5 分:[20,13,42] 。 一位学生可能通过错误的运算顺序得到结果 20 :7+3=10,10*1=10,10*2=20 。所以这位学生得分为 2 分:[20,13,42] 。 @@ -55,7 +57,8 @@ tags:示例 2:
-输入:s = "3+5*2", answers = [13,0,10,13,13,16,16] ++输入:s = "3+5*2", answers = [13,0,10,13,13,16,16] 输出:19 解释:表达式的正确结果为 13 ,所以有 3 位学生得到 5 分:[13,0,10,13,13,16,16] 。 学生可能通过错误的运算顺序得到结果 16 :3+5=8,8*2=16 。所以两位学生得到 2 分:[13,0,10,13,13,16,16] 。 @@ -64,7 +67,8 @@ tags:示例 3:
-输入:s = "6+0*1", answers = [12,9,6,4,8,6] ++输入:s = "6+0*1", answers = [12,9,6,4,8,6] 输出:10 解释:表达式的正确结果为 6 。 如果一位学生通过错误的运算顺序计算该表达式,结果仍为 6 。 @@ -82,6 +86,7 @@ tags:
[0, 9]
以内。1 <=
数学表达式中所有运算符数目('+'
和 '*'
) <= 15
[0, 1000]
以内。109
。n == answers.length
1 <= n <= 104
0 <= answers[i] <= 1000
[0, 9]
.1 <=
The count of all operators ('+'
and '*'
) in the math expression <= 15
[0, 1000]
.n == answers.length
1 <= n <= 104
0 <= answers[i] <= 1000