@@ -24,103 +24,101 @@ that entails.
24
24
Here are links to the v0.1 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
25
25
repository <http://github.com/jvns/pandas-cookbook> `_.
26
26
27
- * | `A quick tour of the IPython
28
- Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb> `_
29
- Shows off IPython's awesome tab completion and magic functions.
30
- * | `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb >`_
31
- Reading your data into pandas is pretty much the easiest thing. Even
32
- when the encoding is wrong!
33
- * | `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb >`_
34
- It's not totally obvious how to select data from a pandas dataframe.
35
- Here we explain the basics (how to take slices and get columns)
36
- * | `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb >`_
37
- Here we get into serious slicing and dicing and learn how to filter
38
- dataframes in complicated ways, really fast.
39
- * | `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb >`_
40
- Groupby/aggregate is seriously my favorite thing about pandas
41
- and I use it all the time. You should probably read this.
42
- * | `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb >`_
43
- Here you get to find out if it's cold in Montreal in the winter
44
- (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
45
- * | `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb >`_
46
- Strings with pandas are great. It has all these vectorized string
47
- operations and they're the best. We will turn a bunch of strings
48
- containing "Snow" into vectors of numbers in a trice.
49
- * | `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb >`_
50
- Cleaning up messy data is never a joy, but with pandas it's easier.
51
- * | `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb >`_
52
- Parsing Unix timestamps is confusing at first but it turns out
53
- to be really easy.
54
-
27
+ - `A quick tour of the IPython Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb >`_
28
+ Shows off IPython's awesome tab completion and magic functions.
29
+ - `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb >`_
30
+ Reading your data into pandas is pretty much the easiest thing. Even
31
+ when the encoding is wrong!
32
+ - `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb >`_
33
+ It's not totally obvious how to select data from a pandas dataframe.
34
+ Here we explain the basics (how to take slices and get columns)
35
+ - `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb >`_
36
+ Here we get into serious slicing and dicing and learn how to filter
37
+ dataframes in complicated ways, really fast.
38
+ - `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb >`_
39
+ Groupby/aggregate is seriously my favorite thing about pandas
40
+ and I use it all the time. You should probably read this.
41
+ - `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb >`_
42
+ Here you get to find out if it's cold in Montreal in the winter
43
+ (spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
44
+ - `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb >`_
45
+ Strings with pandas are great. It has all these vectorized string
46
+ operations and they're the best. We will turn a bunch of strings
47
+ containing "Snow" into vectors of numbers in a trice.
48
+ - `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb >`_
49
+ Cleaning up messy data is never a joy, but with pandas it's easier.
50
+ - `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb >`_
51
+ Parsing Unix timestamps is confusing at first but it turns out
52
+ to be really easy.
55
53
56
54
57
55
Lessons for New Pandas Users
58
56
----------------------------
59
57
60
58
For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas >`_.
61
59
62
- * | `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb >`_
63
- * Importing libraries
64
- * Creating data sets
65
- * Creating data frames
66
- * Reading from CSV
67
- * Exporting to CSV
68
- * Finding maximums
69
- * Plotting data
60
+ - `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb >`_
61
+ - Importing libraries
62
+ - Creating data sets
63
+ - Creating data frames
64
+ - Reading from CSV
65
+ - Exporting to CSV
66
+ - Finding maximums
67
+ - Plotting data
70
68
71
- * | `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb >`_
72
- * Reading from TXT
73
- * Exporting to TXT
74
- * Selecting top/bottom records
75
- * Descriptive statistics
76
- * Grouping/sorting data
69
+ - `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb >`_
70
+ - Reading from TXT
71
+ - Exporting to TXT
72
+ - Selecting top/bottom records
73
+ - Descriptive statistics
74
+ - Grouping/sorting data
77
75
78
- * | `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb >`_
79
- * Creating functions
80
- * Reading from EXCEL
81
- * Exporting to EXCEL
82
- * Outliers
83
- * Lambda functions
84
- * Slice and dice data
76
+ - `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb >`_
77
+ - Creating functions
78
+ - Reading from EXCEL
79
+ - Exporting to EXCEL
80
+ - Outliers
81
+ - Lambda functions
82
+ - Slice and dice data
85
83
86
- * | `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb >`_
87
- * Adding/deleting columns
88
- * Index operations
84
+ - `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb >`_
85
+ - Adding/deleting columns
86
+ - Index operations
89
87
90
- * | `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb >`_
91
- * Stack/Unstack/Transpose functions
88
+ - `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb >`_
89
+ - Stack/Unstack/Transpose functions
92
90
93
- * | `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb >`_
94
- * GroupBy function
91
+ - `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb >`_
92
+ - GroupBy function
95
93
96
- * | `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb >`_
97
- * Ways to calculate outliers
94
+ - `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb >`_
95
+ - Ways to calculate outliers
98
96
99
- * | `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb >`_
100
- * Read from Microsoft SQL databases
97
+ - `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb >`_
98
+ - Read from Microsoft SQL databases
101
99
102
- * | `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb >`_
103
- * Export to CSV/EXCEL/TXT
100
+ - `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb >`_
101
+ - Export to CSV/EXCEL/TXT
104
102
105
- * | `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb >`_
106
- * Converting between different kinds of formats
103
+ - `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb >`_
104
+ - Converting between different kinds of formats
107
105
108
- * | `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb >`_
109
- * Combining data from various sources
106
+ - `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb >`_
107
+ - Combining data from various sources
110
108
111
109
112
110
Excel charts with pandas, vincent and xlsxwriter
113
111
------------------------------------------------
114
112
115
- * `Using Pandas and XlsxWriter to create Excel charts <http://pandas-xlsxwriter-charts.readthedocs.org/ >`_
113
+ - `Using Pandas and XlsxWriter to create Excel charts <http://pandas-xlsxwriter-charts.readthedocs.org/ >`_
116
114
117
115
Various Tutorials
118
116
-----------------
119
117
120
- * `Wes McKinney's (Pandas BDFL) blog <http://blog.wesmckinney.com/ >`_
121
- * `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/ >`_
122
- * `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109 >`_
123
- * `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb >`_
124
- * `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ >`_
125
- * `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/ >`_
126
- * `Pandas Tutorial, by Mikhail Semeniuk <www.bearrelroll.com/2013/05/python-pandas-tutorial >`_
118
+ - `Wes McKinney's (Pandas BDFL) blog <http://blog.wesmckinney.com/ >`_
119
+ - `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/ >`_
120
+ - `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109 >`_
121
+ - `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb >`_
122
+ - `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ >`_
123
+ - `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/ >`_
124
+ - `Pandas Tutorial, by Mikhail Semeniuk <www.bearrelroll.com/2013/05/python-pandas-tutorial >`_
0 commit comments