Skip to content

Commit 507d477

Browse files
author
y-p
committed
DOC: cleanup warnings in tutorials.rst
1 parent 0175671 commit 507d477

File tree

1 file changed

+72
-74
lines changed

1 file changed

+72
-74
lines changed

doc/source/tutorials.rst

Lines changed: 72 additions & 74 deletions
Original file line numberDiff line numberDiff line change
@@ -24,103 +24,101 @@ that entails.
2424
Here are links to the v0.1 release. For an up-to-date table of contents, see the `pandas-cookbook GitHub
2525
repository <http://github.com/jvns/pandas-cookbook>`_.
2626

27-
* | `A quick tour of the IPython
28-
Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
29-
Shows off IPython's awesome tab completion and magic functions.
30-
* | `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
31-
Reading your data into pandas is pretty much the easiest thing. Even
32-
when the encoding is wrong!
33-
* | `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
34-
It's not totally obvious how to select data from a pandas dataframe.
35-
Here we explain the basics (how to take slices and get columns)
36-
* | `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
37-
Here we get into serious slicing and dicing and learn how to filter
38-
dataframes in complicated ways, really fast.
39-
* | `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
40-
Groupby/aggregate is seriously my favorite thing about pandas
41-
and I use it all the time. You should probably read this.
42-
* | `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb>`_
43-
Here you get to find out if it's cold in Montreal in the winter
44-
(spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
45-
* | `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb>`_
46-
Strings with pandas are great. It has all these vectorized string
47-
operations and they're the best. We will turn a bunch of strings
48-
containing "Snow" into vectors of numbers in a trice.
49-
* | `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
50-
Cleaning up messy data is never a joy, but with pandas it's easier.
51-
* | `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
52-
Parsing Unix timestamps is confusing at first but it turns out
53-
to be really easy.
54-
27+
- `A quick tour of the IPython Notebook: <http://nbviewer.ipython.org/github/jvns/pandas-c|%2055ookbook/blob/v0.1/cookbook/A%20quick%20tour%20of%20IPython%20Notebook.ipynb>`_
28+
Shows off IPython's awesome tab completion and magic functions.
29+
- `Chapter 1: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%201%20-%20Reading%20from%20a%20CSV.ipynb>`_
30+
Reading your data into pandas is pretty much the easiest thing. Even
31+
when the encoding is wrong!
32+
- `Chapter 2: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%202%20-%20Selecting%20data%20&%20finding%20the%20most%20common%20complaint%20type.ipynb>`_
33+
It's not totally obvious how to select data from a pandas dataframe.
34+
Here we explain the basics (how to take slices and get columns)
35+
- `Chapter 3: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%203%20-%20Which%20borough%20has%20the%20most%20noise%20complaints%3F%20%28or%2C%20more%20selecting%20data%29.ipynb>`_
36+
Here we get into serious slicing and dicing and learn how to filter
37+
dataframes in complicated ways, really fast.
38+
- `Chapter 4: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%204%20-%20Find%20out%20on%20which%20weekday%20people%20bike%20the%20most%20with%20groupby%20and%20aggregate.ipynb>`_
39+
Groupby/aggregate is seriously my favorite thing about pandas
40+
and I use it all the time. You should probably read this.
41+
- `Chapter 5: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%205%20-%20Combining%20dataframes%20and%20scraping%20Canadian%20weather%20data.ipynb>`_
42+
Here you get to find out if it's cold in Montreal in the winter
43+
(spoiler: yes). Web scraping with pandas is fun! Here we combine dataframes.
44+
- `Chapter 6: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%206%20-%20String%20operations%21%20Which%20month%20was%20the%20snowiest%3F.ipynb>`_
45+
Strings with pandas are great. It has all these vectorized string
46+
operations and they're the best. We will turn a bunch of strings
47+
containing "Snow" into vectors of numbers in a trice.
48+
- `Chapter 7: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%207%20-%20Cleaning%20up%20messy%20data.ipynb>`_
49+
Cleaning up messy data is never a joy, but with pandas it's easier.
50+
- `Chapter 8: <http://nbviewer.ipython.org/github/jvns/pandas-cookbook/blob/v0.1/cookbook/Chapter%208%20-%20How%20to%20deal%20with%20timestamps.ipynb>`_
51+
Parsing Unix timestamps is confusing at first but it turns out
52+
to be really easy.
5553

5654

5755
Lessons for New Pandas Users
5856
----------------------------
5957

6058
For more resources, please visit the main `repository <https://bitbucket.org/hrojas/learn-pandas>`_.
6159

62-
* | `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
63-
* Importing libraries
64-
* Creating data sets
65-
* Creating data frames
66-
* Reading from CSV
67-
* Exporting to CSV
68-
* Finding maximums
69-
* Plotting data
60+
- `01 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/01%20-%20Lesson.ipynb>`_
61+
- Importing libraries
62+
- Creating data sets
63+
- Creating data frames
64+
- Reading from CSV
65+
- Exporting to CSV
66+
- Finding maximums
67+
- Plotting data
7068

71-
* | `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
72-
* Reading from TXT
73-
* Exporting to TXT
74-
* Selecting top/bottom records
75-
* Descriptive statistics
76-
* Grouping/sorting data
69+
- `02 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/02%20-%20Lesson.ipynb>`_
70+
- Reading from TXT
71+
- Exporting to TXT
72+
- Selecting top/bottom records
73+
- Descriptive statistics
74+
- Grouping/sorting data
7775

78-
* | `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
79-
* Creating functions
80-
* Reading from EXCEL
81-
* Exporting to EXCEL
82-
* Outliers
83-
* Lambda functions
84-
* Slice and dice data
76+
- `03 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/03%20-%20Lesson.ipynb>`_
77+
- Creating functions
78+
- Reading from EXCEL
79+
- Exporting to EXCEL
80+
- Outliers
81+
- Lambda functions
82+
- Slice and dice data
8583

86-
* | `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
87-
* Adding/deleting columns
88-
* Index operations
84+
- `04 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/04%20-%20Lesson.ipynb>`_
85+
- Adding/deleting columns
86+
- Index operations
8987

90-
* | `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
91-
* Stack/Unstack/Transpose functions
88+
- `05 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/05%20-%20Lesson.ipynb>`_
89+
- Stack/Unstack/Transpose functions
9290

93-
* | `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
94-
* GroupBy function
91+
- `06 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/06%20-%20Lesson.ipynb>`_
92+
- GroupBy function
9593

96-
* | `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
97-
* Ways to calculate outliers
94+
- `07 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/07%20-%20Lesson.ipynb>`_
95+
- Ways to calculate outliers
9896

99-
* | `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
100-
* Read from Microsoft SQL databases
97+
- `08 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/08%20-%20Lesson.ipynb>`_
98+
- Read from Microsoft SQL databases
10199

102-
* | `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
103-
* Export to CSV/EXCEL/TXT
100+
- `09 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/09%20-%20Lesson.ipynb>`_
101+
- Export to CSV/EXCEL/TXT
104102

105-
* | `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
106-
* Converting between different kinds of formats
103+
- `10 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/10%20-%20Lesson.ipynb>`_
104+
- Converting between different kinds of formats
107105

108-
* | `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
109-
* Combining data from various sources
106+
- `11 - Lesson: <http://nbviewer.ipython.org/urls/bitbucket.org/hrojas/learn-pandas/raw/master/lessons/11%20-%20Lesson.ipynb>`_
107+
- Combining data from various sources
110108

111109

112110
Excel charts with pandas, vincent and xlsxwriter
113111
------------------------------------------------
114112

115-
* `Using Pandas and XlsxWriter to create Excel charts <http://pandas-xlsxwriter-charts.readthedocs.org/>`_
113+
- `Using Pandas and XlsxWriter to create Excel charts <http://pandas-xlsxwriter-charts.readthedocs.org/>`_
116114

117115
Various Tutorials
118116
-----------------
119117

120-
* `Wes McKinney's (Pandas BDFL) blog <http://blog.wesmckinney.com/>`_
121-
* `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/>`_
122-
* `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109>`_
123-
* `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb>`_
124-
* `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/>`_
125-
* `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/>`_
126-
* `Pandas Tutorial, by Mikhail Semeniuk <www.bearrelroll.com/2013/05/python-pandas-tutorial>`_
118+
- `Wes McKinney's (Pandas BDFL) blog <http://blog.wesmckinney.com/>`_
119+
- `Statistical analysis made easy in Python with SciPy and pandas DataFrames, by Randal Olson <http://www.randalolson.com/2012/08/06/statistical-analysis-made-easy-in-python/>`_
120+
- `Statistical Data Analysis in Python, tutorial videos, by Christopher Fonnesbeck from SciPy 2013 <http://conference.scipy.org/scipy2013/tutorial_detail.php?id=109>`_
121+
- `Financial analysis in python, by Thomas Wiecki <http://nbviewer.ipython.org/github/twiecki/financial-analysis-python-tutorial/blob/master/1.%20Pandas%20Basics.ipynb>`_
122+
- `Intro to pandas data structures, by Greg Reda <http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/>`_
123+
- `Pandas and Python: Top 10, by Manish Amde <http://manishamde.github.io/blog/2013/03/07/pandas-and-python-top-10/>`_
124+
- `Pandas Tutorial, by Mikhail Semeniuk <www.bearrelroll.com/2013/05/python-pandas-tutorial>`_

0 commit comments

Comments
 (0)