Skip to content

Commit 3f9d559

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 83beb5f35fe88b4d56d8cf9eb95f9617e456f6a4
1 parent 7d90ffc commit 3f9d559

File tree

936 files changed

+2621
-2621
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

936 files changed

+2621
-2621
lines changed
14 Bytes
Binary file not shown.
14 Bytes
Binary file not shown.

dev/_downloads/plot_compare_gpr_krr.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@
2424
"execution_count": null,
2525
"cell_type": "code",
2626
"source": [
27-
"print(__doc__)\n\n# Authors: Jan Hendrik Metzen <[email protected]>\n# License: BSD 3 clause\n\n\nimport time\n\nimport numpy as np\n\nimport matplotlib.pyplot as plt\n\nfrom sklearn.kernel_ridge import KernelRidge\nfrom sklearn.model_selection import GridSearchCV\nfrom sklearn.gaussian_process import GaussianProcessRegressor\nfrom sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared\n\nrng = np.random.RandomState(0)\n\n# Generate sample data\nX = 15 * rng.rand(100, 1)\ny = np.sin(X).ravel()\ny += 3 * (0.5 - rng.rand(X.shape[0])) # add noise\n\n# Fit KernelRidge with parameter selection based on 5-fold cross validation\nparam_grid = {\"alpha\": [1e0, 1e-1, 1e-2, 1e-3],\n \"kernel\": [ExpSineSquared(l, p)\n for l in np.logspace(-2, 2, 10)\n for p in np.logspace(0, 2, 10)]}\nkr = GridSearchCV(KernelRidge(), cv=5, param_grid=param_grid)\nstime = time.time()\nkr.fit(X, y)\nprint(\"Time for KRR fitting: %.3f\" % (time.time() - stime))\n\ngp_kernel = ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) \\\n + WhiteKernel(1e-1)\ngpr = GaussianProcessRegressor(kernel=gp_kernel)\nstime = time.time()\ngpr.fit(X, y)\nprint(\"Time for GPR fitting: %.3f\" % (time.time() - stime))\n\n# Predict using kernel ridge\nX_plot = np.linspace(0, 20, 10000)[:, None]\nstime = time.time()\ny_kr = kr.predict(X_plot)\nprint(\"Time for KRR prediction: %.3f\" % (time.time() - stime))\n\n# Predict using kernel ridge\nstime = time.time()\ny_gpr = gpr.predict(X_plot, return_std=False)\nprint(\"Time for GPR prediction: %.3f\" % (time.time() - stime))\n\nstime = time.time()\ny_gpr, y_std = gpr.predict(X_plot, return_std=True)\nprint(\"Time for GPR prediction with standard-deviation: %.3f\"\n % (time.time() - stime))\n\n# Plot results\nplt.figure(figsize=(10, 5))\nlw = 2\nplt.scatter(X, y, c='k', label='data')\nplt.plot(X_plot, np.sin(X_plot), color='navy', lw=lw, label='True')\nplt.plot(X_plot, y_kr, color='turquoise', lw=lw,\n label='KRR (%s)' % kr.best_params_)\nplt.plot(X_plot, y_gpr, color='darkorange', lw=lw,\n label='GPR (%s)' % gpr.kernel_)\nplt.fill_between(X_plot[:, 0], y_gpr - y_std, y_gpr + y_std, color='darkorange',\n alpha=0.2)\nplt.xlabel('data')\nplt.ylabel('target')\nplt.xlim(0, 20)\nplt.ylim(-4, 4)\nplt.title('GPR versus Kernel Ridge')\nplt.legend(loc=\"best\", scatterpoints=1, prop={'size': 8})\nplt.show()"
27+
"print(__doc__)\n\n# Authors: Jan Hendrik Metzen <[email protected]>\n# License: BSD 3 clause\n\n\nimport time\n\nimport numpy as np\n\nimport matplotlib.pyplot as plt\n\nfrom sklearn.kernel_ridge import KernelRidge\nfrom sklearn.model_selection import GridSearchCV\nfrom sklearn.gaussian_process import GaussianProcessRegressor\nfrom sklearn.gaussian_process.kernels import WhiteKernel, ExpSineSquared\n\nrng = np.random.RandomState(0)\n\n# Generate sample data\nX = 15 * rng.rand(100, 1)\ny = np.sin(X).ravel()\ny += 3 * (0.5 - rng.rand(X.shape[0])) # add noise\n\n# Fit KernelRidge with parameter selection based on 5-fold cross validation\nparam_grid = {\"alpha\": [1e0, 1e-1, 1e-2, 1e-3],\n \"kernel\": [ExpSineSquared(l, p)\n for l in np.logspace(-2, 2, 10)\n for p in np.logspace(0, 2, 10)]}\nkr = GridSearchCV(KernelRidge(), cv=5, param_grid=param_grid)\nstime = time.time()\nkr.fit(X, y)\nprint(\"Time for KRR fitting: %.3f\" % (time.time() - stime))\n\ngp_kernel = ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) \\\n + WhiteKernel(1e-1)\ngpr = GaussianProcessRegressor(kernel=gp_kernel)\nstime = time.time()\ngpr.fit(X, y)\nprint(\"Time for GPR fitting: %.3f\" % (time.time() - stime))\n\n# Predict using kernel ridge\nX_plot = np.linspace(0, 20, 10000)[:, None]\nstime = time.time()\ny_kr = kr.predict(X_plot)\nprint(\"Time for KRR prediction: %.3f\" % (time.time() - stime))\n\n# Predict using gaussian process regressor\nstime = time.time()\ny_gpr = gpr.predict(X_plot, return_std=False)\nprint(\"Time for GPR prediction: %.3f\" % (time.time() - stime))\n\nstime = time.time()\ny_gpr, y_std = gpr.predict(X_plot, return_std=True)\nprint(\"Time for GPR prediction with standard-deviation: %.3f\"\n % (time.time() - stime))\n\n# Plot results\nplt.figure(figsize=(10, 5))\nlw = 2\nplt.scatter(X, y, c='k', label='data')\nplt.plot(X_plot, np.sin(X_plot), color='navy', lw=lw, label='True')\nplt.plot(X_plot, y_kr, color='turquoise', lw=lw,\n label='KRR (%s)' % kr.best_params_)\nplt.plot(X_plot, y_gpr, color='darkorange', lw=lw,\n label='GPR (%s)' % gpr.kernel_)\nplt.fill_between(X_plot[:, 0], y_gpr - y_std, y_gpr + y_std, color='darkorange',\n alpha=0.2)\nplt.xlabel('data')\nplt.ylabel('target')\nplt.xlim(0, 20)\nplt.ylim(-4, 4)\nplt.title('GPR versus Kernel Ridge')\nplt.legend(loc=\"best\", scatterpoints=1, prop={'size': 8})\nplt.show()"
2828
],
2929
"outputs": [],
3030
"metadata": {

dev/_downloads/plot_compare_gpr_krr.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -91,7 +91,7 @@
9191
y_kr = kr.predict(X_plot)
9292
print("Time for KRR prediction: %.3f" % (time.time() - stime))
9393

94-
# Predict using kernel ridge
94+
# Predict using gaussian process regressor
9595
stime = time.time()
9696
y_gpr = gpr.predict(X_plot, return_std=False)
9797
print("Time for GPR prediction: %.3f" % (time.time() - stime))

dev/_downloads/scikit-learn-docs.pdf

-9.89 KB
Binary file not shown.

0 commit comments

Comments
 (0)