From c5727d95f1fc8bd5b34eaed0c40e3ec72fbc73dc Mon Sep 17 00:00:00 2001 From: Zachary S Date: Mon, 28 Jul 2025 16:13:07 -0500 Subject: [PATCH] Implement some more checks for `ptr_guaranteed_cmp` in consteval: Pointers with different residues modulo their least common allocation alignment are never equal. Pointers to the same static allocation are equal if and only if they have the same offset. Pointers to different non-zero-sized static allocations are unequal if both point within their allocation, and not on opposite ends. --- .../src/const_eval/machine.rs | 92 +++++++++- tests/ui/const-ptr/guaranteed_cmp.rs | 171 ++++++++++++++++++ 2 files changed, 256 insertions(+), 7 deletions(-) create mode 100644 tests/ui/const-ptr/guaranteed_cmp.rs diff --git a/compiler/rustc_const_eval/src/const_eval/machine.rs b/compiler/rustc_const_eval/src/const_eval/machine.rs index a18ae79f318df..a4ba04ef8347f 100644 --- a/compiler/rustc_const_eval/src/const_eval/machine.rs +++ b/compiler/rustc_const_eval/src/const_eval/machine.rs @@ -289,13 +289,91 @@ impl<'tcx> CompileTimeInterpCx<'tcx> { } // Other ways of comparing integers and pointers can never be known for sure. (Scalar::Int { .. }, Scalar::Ptr(..)) | (Scalar::Ptr(..), Scalar::Int { .. }) => 2, - // FIXME: return a `1` for when both sides are the same pointer, *except* that - // some things (like functions and vtables) do not have stable addresses - // so we need to be careful around them (see e.g. #73722). - // FIXME: return `0` for at least some comparisons where we can reliably - // determine the result of runtime inequality tests at compile-time. - // Examples include comparison of addresses in different static items. - (Scalar::Ptr(..), Scalar::Ptr(..)) => 2, + (Scalar::Ptr(a, _), Scalar::Ptr(b, _)) => { + let (a_prov, a_offset) = a.prov_and_relative_offset(); + let (b_prov, b_offset) = b.prov_and_relative_offset(); + let a_allocid = a_prov.alloc_id(); + let b_allocid = b_prov.alloc_id(); + let a_info = self.get_alloc_info(a_allocid); + let b_info = self.get_alloc_info(b_allocid); + + // Check if the pointers cannot be equal due to alignment + if a_info.align > Align::ONE && b_info.align > Align::ONE { + let min_align = Ord::min(a_info.align.bytes(), b_info.align.bytes()); + let a_residue = a_offset.bytes() % min_align; + let b_residue = b_offset.bytes() % min_align; + if a_residue != b_residue { + // If the two pointers have a different residue from their + // common alignment, they cannot be equal. + return interp_ok(0); + } + // The pointers have the same residue modulo their common alignment, + // so they could be equal. Try the other checks. + } + + if a_allocid == b_allocid { + match self.tcx.try_get_global_alloc(a_allocid) { + None => 2, + // A static cannot be duplicated, so if two pointers are into the same + // static, they are equal if and only if their offsets into the static + // are equal + Some(GlobalAlloc::Static(_)) => (a_offset == b_offset) as u8, + // Functions and vtables can be duplicated (and deduplicated), so we + // cannot be sure of runtime equality of pointers to the same one, (or the + // runtime inequality of pointers to different ones) (see e.g. #73722). + Some(GlobalAlloc::Function { .. } | GlobalAlloc::VTable(..)) => 2, + // FIXME: Can these be duplicated (or deduplicated)? + Some(GlobalAlloc::Memory(..) | GlobalAlloc::TypeId { .. }) => 2, + } + } else { + if let (Some(GlobalAlloc::Static(a_did)), Some(GlobalAlloc::Static(b_did))) = ( + self.tcx.try_get_global_alloc(a_allocid), + self.tcx.try_get_global_alloc(b_allocid), + ) { + debug_assert_ne!( + a_did, b_did, + "same static item DefId had two different AllocIds? {a_allocid:?} != {b_allocid:?}, {a_did:?} == {b_did:?}" + ); + + if a_info.size == Size::ZERO || b_info.size == Size::ZERO { + // One or both allocations is zero-sized, so we can't know if the + // pointers are (in)equal. + // FIXME: Can zero-sized static be "within" non-zero-sized statics? + // Conservatively we say yes, since that doesn't cause them to + // "overlap" any bytes, but if not, then we could delete this branch + // and have the other branches handle ZST allocations. + 2 + } else if a_offset > a_info.size || b_offset > b_info.size { + // One or both pointers are out of bounds of their allocation, + // so conservatively say we don't know. + // FIXME: we could reason about how far out of bounds the pointers are, + // e.g. two pointers cannot be equal if them being equal would require + // their statics to overlap. + 2 + } else if (a_offset == Size::ZERO && b_offset == b_info.size) + || (a_offset == a_info.size && b_offset == Size::ZERO) + { + // The pointers are on opposite ends of different allocations, we + // cannot know if they are equal, since the allocations may end up + // adjacent at runtime. + 2 + } else { + // The pointers are within (or one past the end of) different + // non-zero-sized static allocations, and they are not at oppotiste + // ends, so we know they are not equal because statics cannot + // overlap or be deduplicated. + 0 + } + } else { + // Even if one of them is a static, as per https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness + // immutable statics can overlap with other kinds of allocations somtimes. + // FIXME: We could be more decisive for mutable statics, which cannot + // overlap with other kinds of allocations. + // FIXME: Can we determine any other cases? + 2 + } + } + } }) } } diff --git a/tests/ui/const-ptr/guaranteed_cmp.rs b/tests/ui/const-ptr/guaranteed_cmp.rs new file mode 100644 index 0000000000000..645ca35598d1d --- /dev/null +++ b/tests/ui/const-ptr/guaranteed_cmp.rs @@ -0,0 +1,171 @@ +//@ build-pass +//@ edition: 2024 +#![feature(const_raw_ptr_comparison)] +#![feature(fn_align)] +// Generally: +// For any `Some` return, `None` would also be valid, unless otherwise noted. +// For any `None` return, only `None` is valid, unless otherwise noted. + +macro_rules! do_test { + ($a:expr, $b:expr, $expected:pat) => { + const _: () = { + let a: *const _ = $a; + let b: *const _ = $b; + assert!(matches!(<*const u8>::guaranteed_eq(a.cast(), b.cast()), $expected)); + }; + }; +} + +#[repr(align(2))] +struct T(#[allow(unused)] u16); + +#[repr(align(2))] +struct AlignedZst; + +static A: T = T(42); +static B: T = T(42); +static mut MUT_STATIC: T = T(42); +static ZST: () = (); +static ALIGNED_ZST: AlignedZst = AlignedZst; +static LARGE_WORD_ALIGNED: [usize; 2] = [0, 1]; +static mut MUT_LARGE_WORD_ALIGNED: [usize; 2] = [0, 1]; + +const FN_PTR: *const () = { + fn foo() {} + unsafe { std::mem::transmute(foo as fn()) } +}; + +const ALIGNED_FN_PTR: *const () = { + #[rustc_align(2)] + fn aligned_foo() {} + unsafe { std::mem::transmute(aligned_foo as fn()) } +}; + +// Only on armv5te-* and armv4t-* +#[cfg(all( + target_arch = "arm", + not(target_feature = "v6"), +))] +const ALIGNED_THUMB_FN_PTR: *const () = { + #[rustc_align(2)] + #[instruction_set(arm::t32)] + fn aligned_thumb_foo() {} + unsafe { std::mem::transmute(aligned_thumb_foo as fn()) } +}; + +trait Trait { + #[allow(unused)] + fn method(&self) -> u8; +} +impl Trait for u32 { + fn method(&self) -> u8 { 1 } +} +impl Trait for i32 { + fn method(&self) -> u8 { 2 } +} + +const VTABLE_PTR_1: *const () = { + let [_data, vtable] = unsafe { + std::mem::transmute::<&dyn Trait, [*const (); 2]>(&42_u32 as &dyn Trait) + }; + vtable +}; +const VTABLE_PTR_2: *const () = { + let [_data, vtable] = unsafe { + std::mem::transmute::<&dyn Trait, [*const (); 2]>(&42_i32 as &dyn Trait) + }; + vtable +}; + +// Cannot be `None`: static's address, references, and `fn` pointers cannot be null, +// and `is_null` is stable with strong guarantees, and `is_null` is implemented using +// `guaranteed_cmp`. +do_test!(&A, std::ptr::null::<()>(), Some(false)); +do_test!(&ZST, std::ptr::null::<()>(), Some(false)); +do_test!(&(), std::ptr::null::<()>(), Some(false)); +do_test!(const { &() }, std::ptr::null::<()>(), Some(false)); +do_test!(FN_PTR, std::ptr::null::<()>(), Some(false)); + +// Statics cannot be duplicated +do_test!(&A, &A, Some(true)); + +// Two non-ZST statics cannot have the same address +do_test!(&A, &B, Some(false)); +do_test!(&A, &raw const MUT_STATIC, Some(false)); + +// One-past-the-end of one static can be equal to the address of another static. +do_test!(&A, (&raw const B).wrapping_add(1), None); + +// Cannot know if ZST static is at the same address with anything non-null (if alignment allows). +do_test!(&A, &ZST, None); +do_test!(&A, &ALIGNED_ZST, None); + +// Unclear if ZST statics can be placed "in the middle of" non-ZST statics. +// For now, we conservatively say they could, and return None here. +do_test!(&ZST, (&raw const A).wrapping_byte_add(1), None); + +// As per https://doc.rust-lang.org/nightly/reference/items/static-items.html#r-items.static.storage-disjointness +// immutable statics are allowed to overlap with const items and promoteds. +do_test!(&A, &T(42), None); +do_test!(&A, const { &T(42) }, None); +do_test!(&A, { const X: T = T(42); &X }, None); + +// These could return Some(false), since only immutable statics can overlap with const items +// and promoteds. +do_test!(&raw const MUT_STATIC, &T(42), None); +do_test!(&raw const MUT_STATIC, const { &T(42) }, None); +do_test!(&raw const MUT_STATIC, { const X: T = T(42); &X }, None); + +// An odd offset from a 2-aligned allocation can never be equal to an even offset from a +// 2-aligned allocation, even if the offsets are out-of-bounds. +do_test!(&A, (&raw const B).wrapping_byte_add(1), Some(false)); +do_test!(&A, (&raw const B).wrapping_byte_add(5), Some(false)); +do_test!(&A, (&raw const ALIGNED_ZST).wrapping_byte_add(1), Some(false)); +do_test!(&ALIGNED_ZST, (&raw const A).wrapping_byte_add(1), Some(false)); +do_test!(&A, (&T(42) as *const T).wrapping_byte_add(1), Some(false)); +do_test!(&A, (const { &T(42) } as *const T).wrapping_byte_add(1), Some(false)); +do_test!(&A, ({ const X: T = T(42); &X } as *const T).wrapping_byte_add(1), Some(false)); + +// Pointers into the same static are equal if and only if their offset is the same, +// even if either is out-of-bounds. +do_test!(&A, &A, Some(true)); +do_test!(&A, &A.0, Some(true)); +do_test!(&A, (&raw const A).wrapping_byte_add(1), Some(false)); +do_test!(&A, (&raw const A).wrapping_byte_add(2), Some(false)); +do_test!(&A, (&raw const A).wrapping_byte_add(51), Some(false)); +do_test!((&raw const A).wrapping_byte_add(51), (&raw const A).wrapping_byte_add(51), Some(true)); + +// Pointers to the same fn may be unequal, since `fn`s can be duplicated. +do_test!(FN_PTR, FN_PTR, None); +do_test!(ALIGNED_FN_PTR, ALIGNED_FN_PTR, None); + +// Pointers to different fns may be equal, since `fn`s can be deduplicated. +do_test!(FN_PTR, ALIGNED_FN_PTR, None); + +// Pointers to the same vtable may be unequal, since vtables can be duplicated. +do_test!(VTABLE_PTR_1, VTABLE_PTR_1, None); + +// Pointers to different vtables may be equal, since vtables can be deduplicated. +do_test!(VTABLE_PTR_1, VTABLE_PTR_2, None); + +// Function pointers to aligned function allocations are not necessarily actually aligned, +// due to platform-specific semantics. +// See https://github.com/rust-lang/rust/issues/144661 +// FIXME: This could return `Some` on platforms where function pointers' addresses actually +// correspond to function addresses including alignment, or on ARM if t32 function pointers +// have their low bit set for consteval. +do_test!(ALIGNED_FN_PTR, ALIGNED_FN_PTR.wrapping_byte_offset(1), None); +#[cfg(all( + target_arch = "arm", + not(target_feature = "v6"), +))] +do_test!(ALIGNED_THUMB_FN_PTR, ALIGNED_THUMB_FN_PTR.wrapping_byte_offset(1), None); + +// Conservatively say we don't know. +do_test!(FN_PTR, VTABLE_PTR_1, None); +do_test!((&raw const LARGE_WORD_ALIGNED).cast::().wrapping_add(1), VTABLE_PTR_1, None); +do_test!((&raw const MUT_LARGE_WORD_ALIGNED).cast::().wrapping_add(1), VTABLE_PTR_1, None); +do_test!((&raw const LARGE_WORD_ALIGNED).cast::().wrapping_add(1), FN_PTR, None); +do_test!((&raw const MUT_LARGE_WORD_ALIGNED).cast::().wrapping_add(1), FN_PTR, None); + +fn main() {}