Skip to content

Commit 046152d

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 02b04cb3ecfc5fce1f627281c312753f3b4b8494
1 parent f9de712 commit 046152d

File tree

1,451 files changed

+7082
-8341
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,451 files changed

+7082
-8341
lines changed
Binary file not shown.

dev/_downloads/1bba2567637a1618250bc13e249eb0d7/plot_partial_dependence_visualization_api.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -2,8 +2,7 @@
22
=========================================
33
Advanced Plotting With Partial Dependence
44
=========================================
5-
The :func:`~sklearn.inspection.plot_partial_dependence` function returns a
6-
:class:`~sklearn.inspection.PartialDependenceDisplay` object that can be used
5+
The :class:`~sklearn.inspection.PartialDependenceDisplay` object can be used
76
for plotting without needing to recalculate the partial dependence. In this
87
example, we show how to plot partial dependence plots and how to quickly
98
customize the plot with the visualization API.

dev/_downloads/2e6d841155147c9fbce4ea3837b924b9/plot_release_highlights_0_24_0.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -137,7 +137,7 @@
137137
},
138138
"outputs": [],
139139
"source": [
140-
"from sklearn.ensemble import RandomForestRegressor\nfrom sklearn.datasets import fetch_california_housing\nfrom sklearn.inspection import plot_partial_dependence\n\nX, y = fetch_california_housing(return_X_y=True, as_frame=True)\nfeatures = [\"MedInc\", \"AveOccup\", \"HouseAge\", \"AveRooms\"]\nest = RandomForestRegressor(n_estimators=10)\nest.fit(X, y)\ndisplay = plot_partial_dependence(\n est,\n X,\n features,\n kind=\"individual\",\n subsample=50,\n n_jobs=3,\n grid_resolution=20,\n random_state=0,\n)\ndisplay.figure_.suptitle(\n \"Partial dependence of house value on non-___location features\\n\"\n \"for the California housing dataset, with BayesianRidge\"\n)\ndisplay.figure_.subplots_adjust(hspace=0.3)"
140+
"from sklearn.ensemble import RandomForestRegressor\nfrom sklearn.datasets import fetch_california_housing\n\n# from sklearn.inspection import plot_partial_dependence\nfrom sklearn.inspection import PartialDependenceDisplay\n\nX, y = fetch_california_housing(return_X_y=True, as_frame=True)\nfeatures = [\"MedInc\", \"AveOccup\", \"HouseAge\", \"AveRooms\"]\nest = RandomForestRegressor(n_estimators=10)\nest.fit(X, y)\n\n# plot_partial_dependence has been removed in version 1.2. From 1.2, use\n# PartialDependenceDisplay instead.\n# display = plot_partial_dependence(\ndisplay = PartialDependenceDisplay.from_estimator(\n est,\n X,\n features,\n kind=\"individual\",\n subsample=50,\n n_jobs=3,\n grid_resolution=20,\n random_state=0,\n)\ndisplay.figure_.suptitle(\n \"Partial dependence of house value on non-___location features\\n\"\n \"for the California housing dataset, with BayesianRidge\"\n)\ndisplay.figure_.subplots_adjust(hspace=0.3)"
141141
]
142142
},
143143
{

dev/_downloads/4f07b03421908788913e044918d8ed1e/plot_release_highlights_0_23_0.py

Lines changed: 9 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,9 @@
126126
import numpy as np
127127
from matplotlib import pyplot as plt
128128
from sklearn.model_selection import train_test_split
129-
from sklearn.inspection import plot_partial_dependence
129+
130+
# from sklearn.inspection import plot_partial_dependence
131+
from sklearn.inspection import PartialDependenceDisplay
130132
from sklearn.ensemble import HistGradientBoostingRegressor
131133

132134
n_samples = 500
@@ -138,14 +140,18 @@
138140
gbdt_no_cst = HistGradientBoostingRegressor().fit(X, y)
139141
gbdt_cst = HistGradientBoostingRegressor(monotonic_cst=[1, 0]).fit(X, y)
140142

141-
disp = plot_partial_dependence(
143+
# plot_partial_dependence has been removed in version 1.2. From 1.2, use
144+
# PartialDependenceDisplay instead.
145+
# disp = plot_partial_dependence(
146+
disp = PartialDependenceDisplay.from_estimator(
142147
gbdt_no_cst,
143148
X,
144149
features=[0],
145150
feature_names=["feature 0"],
146151
line_kw={"linewidth": 4, "label": "unconstrained", "color": "tab:blue"},
147152
)
148-
plot_partial_dependence(
153+
# plot_partial_dependence(
154+
PartialDependenceDisplay.from_estimator(
149155
gbdt_cst,
150156
X,
151157
features=[0],

dev/_downloads/50040ae12dd16e7d2e79135d7793c17e/plot_release_highlights_0_22_0.py

Lines changed: 9 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -36,7 +36,10 @@
3636

3737
from sklearn.model_selection import train_test_split
3838
from sklearn.svm import SVC
39-
from sklearn.metrics import plot_roc_curve
39+
40+
# from sklearn.metrics import plot_roc_curve
41+
from sklearn.metrics import RocCurveDisplay
42+
4043
from sklearn.ensemble import RandomForestClassifier
4144
from sklearn.datasets import make_classification
4245
import matplotlib.pyplot as plt
@@ -49,8 +52,11 @@
4952
rfc = RandomForestClassifier(random_state=42)
5053
rfc.fit(X_train, y_train)
5154

52-
svc_disp = plot_roc_curve(svc, X_test, y_test)
53-
rfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=svc_disp.ax_)
55+
# plot_roc_curve has been removed in version 1.2. From 1.2, use RocCurveDisplay instead.
56+
# svc_disp = plot_roc_curve(svc, X_test, y_test)
57+
# rfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=svc_disp.ax_)
58+
svc_disp = RocCurveDisplay.from_estimator(svc, X_test, y_test)
59+
rfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=svc_disp.ax_)
5460
rfc_disp.figure_.suptitle("ROC curve comparison")
5561

5662
plt.show()
Binary file not shown.

dev/_downloads/7f9c06d88a8d544a3815452dacaa0548/plot_semi_supervised_newsgroups.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -41,7 +41,7 @@
4141
print()
4242

4343
# Parameters
44-
sdg_params = dict(alpha=1e-5, penalty="l2", loss="log")
44+
sdg_params = dict(alpha=1e-5, penalty="l2", loss="log_loss")
4545
vectorizer_params = dict(ngram_range=(1, 2), min_df=5, max_df=0.8)
4646

4747
# Supervised Pipeline
@@ -66,7 +66,7 @@
6666
("vect", CountVectorizer(**vectorizer_params)),
6767
("tfidf", TfidfTransformer()),
6868
# LabelSpreading does not support dense matrices
69-
("todense", FunctionTransformer(lambda x: x.todense())),
69+
("toarray", FunctionTransformer(lambda x: x.toarray())),
7070
("clf", LabelSpreading()),
7171
]
7272
)

dev/_downloads/923fcad5e07de1ce7dc8dcbd7327c178/plot_release_highlights_0_23_0.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,7 +87,7 @@
8787
},
8888
"outputs": [],
8989
"source": [
90-
"import numpy as np\nfrom matplotlib import pyplot as plt\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.inspection import plot_partial_dependence\nfrom sklearn.ensemble import HistGradientBoostingRegressor\n\nn_samples = 500\nrng = np.random.RandomState(0)\nX = rng.randn(n_samples, 2)\nnoise = rng.normal(loc=0.0, scale=0.01, size=n_samples)\ny = 5 * X[:, 0] + np.sin(10 * np.pi * X[:, 0]) - noise\n\ngbdt_no_cst = HistGradientBoostingRegressor().fit(X, y)\ngbdt_cst = HistGradientBoostingRegressor(monotonic_cst=[1, 0]).fit(X, y)\n\ndisp = plot_partial_dependence(\n gbdt_no_cst,\n X,\n features=[0],\n feature_names=[\"feature 0\"],\n line_kw={\"linewidth\": 4, \"label\": \"unconstrained\", \"color\": \"tab:blue\"},\n)\nplot_partial_dependence(\n gbdt_cst,\n X,\n features=[0],\n line_kw={\"linewidth\": 4, \"label\": \"constrained\", \"color\": \"tab:orange\"},\n ax=disp.axes_,\n)\ndisp.axes_[0, 0].plot(\n X[:, 0], y, \"o\", alpha=0.5, zorder=-1, label=\"samples\", color=\"tab:green\"\n)\ndisp.axes_[0, 0].set_ylim(-3, 3)\ndisp.axes_[0, 0].set_xlim(-1, 1)\nplt.legend()\nplt.show()"
90+
"import numpy as np\nfrom matplotlib import pyplot as plt\nfrom sklearn.model_selection import train_test_split\n\n# from sklearn.inspection import plot_partial_dependence\nfrom sklearn.inspection import PartialDependenceDisplay\nfrom sklearn.ensemble import HistGradientBoostingRegressor\n\nn_samples = 500\nrng = np.random.RandomState(0)\nX = rng.randn(n_samples, 2)\nnoise = rng.normal(loc=0.0, scale=0.01, size=n_samples)\ny = 5 * X[:, 0] + np.sin(10 * np.pi * X[:, 0]) - noise\n\ngbdt_no_cst = HistGradientBoostingRegressor().fit(X, y)\ngbdt_cst = HistGradientBoostingRegressor(monotonic_cst=[1, 0]).fit(X, y)\n\n# plot_partial_dependence has been removed in version 1.2. From 1.2, use\n# PartialDependenceDisplay instead.\n# disp = plot_partial_dependence(\ndisp = PartialDependenceDisplay.from_estimator(\n gbdt_no_cst,\n X,\n features=[0],\n feature_names=[\"feature 0\"],\n line_kw={\"linewidth\": 4, \"label\": \"unconstrained\", \"color\": \"tab:blue\"},\n)\n# plot_partial_dependence(\nPartialDependenceDisplay.from_estimator(\n gbdt_cst,\n X,\n features=[0],\n line_kw={\"linewidth\": 4, \"label\": \"constrained\", \"color\": \"tab:orange\"},\n ax=disp.axes_,\n)\ndisp.axes_[0, 0].plot(\n X[:, 0], y, \"o\", alpha=0.5, zorder=-1, label=\"samples\", color=\"tab:green\"\n)\ndisp.axes_[0, 0].set_ylim(-3, 3)\ndisp.axes_[0, 0].set_xlim(-1, 1)\nplt.legend()\nplt.show()"
9191
]
9292
},
9393
{

dev/_downloads/d20432c5cccdd8b208184031b83a8cf9/plot_release_highlights_0_24_0.py

Lines changed: 8 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -196,13 +196,19 @@
196196

197197
from sklearn.ensemble import RandomForestRegressor
198198
from sklearn.datasets import fetch_california_housing
199-
from sklearn.inspection import plot_partial_dependence
199+
200+
# from sklearn.inspection import plot_partial_dependence
201+
from sklearn.inspection import PartialDependenceDisplay
200202

201203
X, y = fetch_california_housing(return_X_y=True, as_frame=True)
202204
features = ["MedInc", "AveOccup", "HouseAge", "AveRooms"]
203205
est = RandomForestRegressor(n_estimators=10)
204206
est.fit(X, y)
205-
display = plot_partial_dependence(
207+
208+
# plot_partial_dependence has been removed in version 1.2. From 1.2, use
209+
# PartialDependenceDisplay instead.
210+
# display = plot_partial_dependence(
211+
display = PartialDependenceDisplay.from_estimator(
206212
est,
207213
X,
208214
features,

dev/_downloads/df790541d4c6bdebcc75018a2459467a/plot_release_highlights_0_22_0.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@
3333
},
3434
"outputs": [],
3535
"source": [
36-
"from sklearn.model_selection import train_test_split\nfrom sklearn.svm import SVC\nfrom sklearn.metrics import plot_roc_curve\nfrom sklearn.ensemble import RandomForestClassifier\nfrom sklearn.datasets import make_classification\nimport matplotlib.pyplot as plt\n\nX, y = make_classification(random_state=0)\nX_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)\n\nsvc = SVC(random_state=42)\nsvc.fit(X_train, y_train)\nrfc = RandomForestClassifier(random_state=42)\nrfc.fit(X_train, y_train)\n\nsvc_disp = plot_roc_curve(svc, X_test, y_test)\nrfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=svc_disp.ax_)\nrfc_disp.figure_.suptitle(\"ROC curve comparison\")\n\nplt.show()"
36+
"from sklearn.model_selection import train_test_split\nfrom sklearn.svm import SVC\n\n# from sklearn.metrics import plot_roc_curve\nfrom sklearn.metrics import RocCurveDisplay\n\nfrom sklearn.ensemble import RandomForestClassifier\nfrom sklearn.datasets import make_classification\nimport matplotlib.pyplot as plt\n\nX, y = make_classification(random_state=0)\nX_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)\n\nsvc = SVC(random_state=42)\nsvc.fit(X_train, y_train)\nrfc = RandomForestClassifier(random_state=42)\nrfc.fit(X_train, y_train)\n\n# plot_roc_curve has been removed in version 1.2. From 1.2, use RocCurveDisplay instead.\n# svc_disp = plot_roc_curve(svc, X_test, y_test)\n# rfc_disp = plot_roc_curve(rfc, X_test, y_test, ax=svc_disp.ax_)\nsvc_disp = RocCurveDisplay.from_estimator(svc, X_test, y_test)\nrfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=svc_disp.ax_)\nrfc_disp.figure_.suptitle(\"ROC curve comparison\")\n\nplt.show()"
3737
]
3838
},
3939
{

0 commit comments

Comments
 (0)