Skip to content

Commit 0848671

Browse files
committed
Rebuild dev docs at master=5f3cbb5
1 parent fa41519 commit 0848671

File tree

70 files changed

+164
-328
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

70 files changed

+164
-328
lines changed

dev/_sources/auto_examples/ensemble/plot_voting_decision_regions.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -35,6 +35,6 @@ when the averaged probability is calculated.
3535
.. literalinclude:: plot_voting_decision_regions.py
3636
:lines: 21-
3737

38-
**Total running time of the example:** 0.46 seconds
39-
( 0 minutes 0.46 seconds)
38+
**Total running time of the example:** 0.47 seconds
39+
( 0 minutes 0.47 seconds)
4040

dev/auto_examples/ensemble/plot_partial_dependence.html

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -176,7 +176,7 @@
176176
(see <a class="reference internal" href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor.feature_importances_" title="sklearn.ensemble.GradientBoostingRegressor.feature_importances_"><tt class="xref py py-attr docutils literal"><span class="pre">feature_importances_</span></tt></a>).</p>
177177
<p>This example shows how to obtain partial dependence plots from a
178178
<a class="reference internal" href="../../modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor" title="sklearn.ensemble.GradientBoostingRegressor"><tt class="xref py py-class docutils literal"><span class="pre">GradientBoostingRegressor</span></tt></a> trained on the California
179-
housing dataset. The example is taken from <a class="reference internal" href="../../modules/ensemble.html#htf2009" id="id2">[HTF2009]</a>.</p>
179+
housing dataset. The example is taken from <a class="reference internal" href="#htf2009" id="id2">[HTF2009]</a>.</p>
180180
<p>The plot shows four one-way and one two-way partial dependence plots.
181181
The target variables for the one-way PDP are:
182182
median income (<cite>MedInc</cite>), avg. occupants per household (<cite>AvgOccup</cite>),

dev/auto_examples/ensemble/plot_voting_decision_regions.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -234,8 +234,8 @@
234234
<a href="http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.show"><span class="n">plt</span><span class="o">.</span><span class="n">show</span></a><span class="p">()</span>
235235
</pre></div>
236236
</div>
237-
<p><strong>Total running time of the example:</strong> 0.46 seconds
238-
( 0 minutes 0.46 seconds)</p>
237+
<p><strong>Total running time of the example:</strong> 0.47 seconds
238+
( 0 minutes 0.47 seconds)</p>
239239
</div>
240240

241241

dev/modules/generated/sklearn.calibration.CalibratedClassifierCV.html

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -237,31 +237,31 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.calibrati
237237
</tbody>
238238
</table>
239239
<p class="rubric">References</p>
240-
<table class="docutils citation" frame="void" id="r104" rules="none">
240+
<table class="docutils citation" frame="void" id="r1" rules="none">
241241
<colgroup><col class="label" /><col /></colgroup>
242242
<tbody valign="top">
243-
<tr><td class="label"><a class="fn-backref" href="#id1">[R104]</a></td><td>Obtaining calibrated probability estimates from decision trees
243+
<tr><td class="label"><a class="fn-backref" href="#id1">[R1]</a></td><td>Obtaining calibrated probability estimates from decision trees
244244
and naive Bayesian classifiers, B. Zadrozny &amp; C. Elkan, ICML 2001</td></tr>
245245
</tbody>
246246
</table>
247-
<table class="docutils citation" frame="void" id="r105" rules="none">
247+
<table class="docutils citation" frame="void" id="r2" rules="none">
248248
<colgroup><col class="label" /><col /></colgroup>
249249
<tbody valign="top">
250-
<tr><td class="label"><a class="fn-backref" href="#id2">[R105]</a></td><td>Transforming Classifier Scores into Accurate Multiclass
250+
<tr><td class="label"><a class="fn-backref" href="#id2">[R2]</a></td><td>Transforming Classifier Scores into Accurate Multiclass
251251
Probability Estimates, B. Zadrozny &amp; C. Elkan, (KDD 2002)</td></tr>
252252
</tbody>
253253
</table>
254-
<table class="docutils citation" frame="void" id="r106" rules="none">
254+
<table class="docutils citation" frame="void" id="r3" rules="none">
255255
<colgroup><col class="label" /><col /></colgroup>
256256
<tbody valign="top">
257-
<tr><td class="label"><a class="fn-backref" href="#id3">[R106]</a></td><td>Probabilistic Outputs for Support Vector Machines and Comparisons to
257+
<tr><td class="label"><a class="fn-backref" href="#id3">[R3]</a></td><td>Probabilistic Outputs for Support Vector Machines and Comparisons to
258258
Regularized Likelihood Methods, J. Platt, (1999)</td></tr>
259259
</tbody>
260260
</table>
261-
<table class="docutils citation" frame="void" id="r107" rules="none">
261+
<table class="docutils citation" frame="void" id="r4" rules="none">
262262
<colgroup><col class="label" /><col /></colgroup>
263263
<tbody valign="top">
264-
<tr><td class="label"><a class="fn-backref" href="#id4">[R107]</a></td><td>Predicting Good Probabilities with Supervised Learning,
264+
<tr><td class="label"><a class="fn-backref" href="#id4">[R4]</a></td><td>Predicting Good Probabilities with Supervised Learning,
265265
A. Niculescu-Mizil &amp; R. Caruana, ICML 2005</td></tr>
266266
</tbody>
267267
</table>

dev/modules/generated/sklearn.cluster.AgglomerativeClustering.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@
172172
<h1><a class="reference internal" href="../classes.html#module-sklearn.cluster" title="sklearn.cluster"><tt class="xref py py-mod docutils literal"><span class="pre">sklearn.cluster</span></tt></a>.AgglomerativeClustering<a class="headerlink" href="#sklearn-cluster-agglomerativeclustering" title="Permalink to this headline"></a></h1>
173173
<dl class="class">
174174
<dt id="sklearn.cluster.AgglomerativeClustering">
175-
<em class="property">class </em><tt class="descclassname">sklearn.cluster.</tt><tt class="descname">AgglomerativeClustering</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>n_components=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x2f611b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/5f3cbb5/sklearn/cluster/hierarchical.py#L607"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AgglomerativeClustering" title="Permalink to this definition"></a></dt>
175+
<em class="property">class </em><tt class="descclassname">sklearn.cluster.</tt><tt class="descname">AgglomerativeClustering</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>n_components=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x2c531b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/5f3cbb5/sklearn/cluster/hierarchical.py#L607"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AgglomerativeClustering" title="Permalink to this definition"></a></dt>
176176
<dd><p>Agglomerative Clustering</p>
177177
<p>Recursively merges the pair of clusters that minimally increases
178178
a given linkage distance.</p>
@@ -291,7 +291,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.cluster"
291291
</table>
292292
<dl class="method">
293293
<dt id="sklearn.cluster.AgglomerativeClustering.__init__">
294-
<tt class="descname">__init__</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>n_components=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x2f611b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/5f3cbb5/sklearn/cluster/hierarchical.py#L690"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AgglomerativeClustering.__init__" title="Permalink to this definition"></a></dt>
294+
<tt class="descname">__init__</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>n_components=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x2c531b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/5f3cbb5/sklearn/cluster/hierarchical.py#L690"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.AgglomerativeClustering.__init__" title="Permalink to this definition"></a></dt>
295295
<dd></dd></dl>
296296

297297
<dl class="method">

dev/modules/generated/sklearn.cluster.FeatureAgglomeration.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@
172172
<h1><a class="reference internal" href="../classes.html#module-sklearn.cluster" title="sklearn.cluster"><tt class="xref py py-mod docutils literal"><span class="pre">sklearn.cluster</span></tt></a>.FeatureAgglomeration<a class="headerlink" href="#sklearn-cluster-featureagglomeration" title="Permalink to this headline"></a></h1>
173173
<dl class="class">
174174
<dt id="sklearn.cluster.FeatureAgglomeration">
175-
<em class="property">class </em><tt class="descclassname">sklearn.cluster.</tt><tt class="descname">FeatureAgglomeration</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>n_components=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x2f611b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/5f3cbb5/sklearn/cluster/hierarchical.py#L779"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.FeatureAgglomeration" title="Permalink to this definition"></a></dt>
175+
<em class="property">class </em><tt class="descclassname">sklearn.cluster.</tt><tt class="descname">FeatureAgglomeration</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>n_components=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x2c531b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/5f3cbb5/sklearn/cluster/hierarchical.py#L779"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.FeatureAgglomeration" title="Permalink to this definition"></a></dt>
176176
<dd><p>Agglomerate features.</p>
177177
<p>Similar to AgglomerativeClustering, but recursively merges features
178178
instead of samples.</p>
@@ -300,7 +300,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.cluster"
300300
</table>
301301
<dl class="method">
302302
<dt id="sklearn.cluster.FeatureAgglomeration.__init__">
303-
<tt class="descname">__init__</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>n_components=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x2f611b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/5f3cbb5/sklearn/cluster/hierarchical.py#L690"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.FeatureAgglomeration.__init__" title="Permalink to this definition"></a></dt>
303+
<tt class="descname">__init__</tt><big>(</big><em>n_clusters=2</em>, <em>affinity='euclidean'</em>, <em>memory=Memory(cachedir=None)</em>, <em>connectivity=None</em>, <em>n_components=None</em>, <em>compute_full_tree='auto'</em>, <em>linkage='ward'</em>, <em>pooling_func=&lt;function mean at 0x2c531b8&gt;</em><big>)</big><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/5f3cbb5/sklearn/cluster/hierarchical.py#L690"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.cluster.FeatureAgglomeration.__init__" title="Permalink to this definition"></a></dt>
304304
<dd></dd></dl>
305305

306306
<dl class="method">

dev/modules/generated/sklearn.cluster.MiniBatchKMeans.html

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -525,10 +525,6 @@ <h2>Examples using <tt class="docutils literal"><span class="pre">sklearn.cluste
525525
<a class="reference external image-reference" href="./../../auto_examples/decomposition/plot_faces_decomposition.html"><img alt="../../_images/plot_faces_decomposition1.png" src="../../_images/plot_faces_decomposition1.png" /></a>
526526
<p class="caption"><a class="reference internal" href="../../auto_examples/decomposition/plot_faces_decomposition.html#example-decomposition-plot-faces-decomposition-py"><em>Faces dataset decompositions</em></a></p>
527527
</div>
528-
</div><div class="thumbnailContainer" tooltip="This example applies to :ref:`olivetti_faces` different unsupervised matrix decomposition (dime..."><div class="figure">
529-
<a class="reference external image-reference" href="./../../auto_examples/decomposition/plot_faces_decomposition.html"><img alt="../../_images/plot_faces_decomposition1.png" src="../../_images/plot_faces_decomposition1.png" /></a>
530-
<p class="caption"><a class="reference internal" href="../../auto_examples/decomposition/plot_faces_decomposition.html#example-decomposition-plot-faces-decomposition-py"><em>Faces dataset decompositions</em></a></p>
531-
</div>
532528
</div><div class="thumbnailContainer" tooltip="This is an example showing how the scikit-learn can be used to cluster documents by topics usin..."><div class="figure">
533529
<a class="reference external image-reference" href="./../../auto_examples/text/document_clustering.html"><img alt="../../_images/document_clustering1.png" src="../../_images/document_clustering1.png" /></a>
534530
<p class="caption"><a class="reference internal" href="../../auto_examples/text/document_clustering.html#example-text-document-clustering-py"><em>Clustering text documents using k-means</em></a></p>

dev/modules/generated/sklearn.covariance.LedoitWolf.html

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -469,10 +469,6 @@ <h2>Examples using <tt class="docutils literal"><span class="pre">sklearn.covari
469469
<a class="reference external image-reference" href="./../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html"><img alt="../../_images/plot_pca_vs_fa_model_selection1.png" src="../../_images/plot_pca_vs_fa_model_selection1.png" /></a>
470470
<p class="caption"><a class="reference internal" href="../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#example-decomposition-plot-pca-vs-fa-model-selection-py"><em>Model selection with Probabilistic PCA and Factor Analysis (FA)</em></a></p>
471471
</div>
472-
</div><div class="thumbnailContainer" tooltip="Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the lik..."><div class="figure">
473-
<a class="reference external image-reference" href="./../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html"><img alt="../../_images/plot_pca_vs_fa_model_selection1.png" src="../../_images/plot_pca_vs_fa_model_selection1.png" /></a>
474-
<p class="caption"><a class="reference internal" href="../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#example-decomposition-plot-pca-vs-fa-model-selection-py"><em>Model selection with Probabilistic PCA and Factor Analysis (FA)</em></a></p>
475-
</div>
476472
</div><div class="clearer"></div></div>
477473
</div>
478474

dev/modules/generated/sklearn.covariance.ShrunkCovariance.html

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -457,10 +457,6 @@ <h2>Examples using <tt class="docutils literal"><span class="pre">sklearn.covari
457457
<a class="reference external image-reference" href="./../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html"><img alt="../../_images/plot_pca_vs_fa_model_selection1.png" src="../../_images/plot_pca_vs_fa_model_selection1.png" /></a>
458458
<p class="caption"><a class="reference internal" href="../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#example-decomposition-plot-pca-vs-fa-model-selection-py"><em>Model selection with Probabilistic PCA and Factor Analysis (FA)</em></a></p>
459459
</div>
460-
</div><div class="thumbnailContainer" tooltip="Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the lik..."><div class="figure">
461-
<a class="reference external image-reference" href="./../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html"><img alt="../../_images/plot_pca_vs_fa_model_selection1.png" src="../../_images/plot_pca_vs_fa_model_selection1.png" /></a>
462-
<p class="caption"><a class="reference internal" href="../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#example-decomposition-plot-pca-vs-fa-model-selection-py"><em>Model selection with Probabilistic PCA and Factor Analysis (FA)</em></a></p>
463-
</div>
464460
</div><div class="clearer"></div></div>
465461
</div>
466462

dev/modules/generated/sklearn.cross_validation.cross_val_score.html

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -270,10 +270,6 @@ <h2>Examples using <tt class="docutils literal"><span class="pre">sklearn.cross_
270270
<a class="reference external image-reference" href="./../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html"><img alt="../../_images/plot_pca_vs_fa_model_selection1.png" src="../../_images/plot_pca_vs_fa_model_selection1.png" /></a>
271271
<p class="caption"><a class="reference internal" href="../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#example-decomposition-plot-pca-vs-fa-model-selection-py"><em>Model selection with Probabilistic PCA and Factor Analysis (FA)</em></a></p>
272272
</div>
273-
</div><div class="thumbnailContainer" tooltip="Probabilistic PCA and Factor Analysis are probabilistic models. The consequence is that the lik..."><div class="figure">
274-
<a class="reference external image-reference" href="./../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html"><img alt="../../_images/plot_pca_vs_fa_model_selection1.png" src="../../_images/plot_pca_vs_fa_model_selection1.png" /></a>
275-
<p class="caption"><a class="reference internal" href="../../auto_examples/decomposition/plot_pca_vs_fa_model_selection.html#example-decomposition-plot-pca-vs-fa-model-selection-py"><em>Model selection with Probabilistic PCA and Factor Analysis (FA)</em></a></p>
276-
</div>
277273
</div><div class="thumbnailContainer" tooltip="A tutorial exercise using Cross-validation with an SVM on the Digits dataset."><div class="figure">
278274
<a class="reference external image-reference" href="./../../auto_examples/exercises/plot_cv_digits.html"><img alt="../../_images/plot_cv_digits1.png" src="../../_images/plot_cv_digits1.png" /></a>
279275
<p class="caption"><a class="reference internal" href="../../auto_examples/exercises/plot_cv_digits.html#example-exercises-plot-cv-digits-py"><em>Cross-validation on Digits Dataset Exercise</em></a></p>

0 commit comments

Comments
 (0)