Skip to content

Commit 0a325c9

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 2fd022d972ab13f83bde581fa1f9ad74b4e6ebce
1 parent 4908eec commit 0a325c9

File tree

1,327 files changed

+5266
-5266
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,327 files changed

+5266
-5266
lines changed

dev/.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: be7c284539ba9169136138383e7ead5b
3+
config: 8340a2641ea6cd48b5e6b1fa5e158d22
44
tags: 645f666f9bcd5a90fca523b33c5a78b7
Binary file not shown.

dev/_downloads/0b802e24fdcd192a452e91580f278039/plot_dbscan.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@
8989
# ------------
9090
#
9191
# Core samples (large dots) and non-core samples (small dots) are color-coded
92-
# according to the asigned cluster. Samples tagged as noise are represented in
92+
# according to the assigned cluster. Samples tagged as noise are represented in
9393
# black.
9494

9595
unique_labels = set(labels)

dev/_downloads/10bb40e21b74618cdeed618ff1eae595/plot_det.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -29,7 +29,7 @@
2929
"cell_type": "markdown",
3030
"metadata": {},
3131
"source": [
32-
"## Define the classifiers\n\nHere we define two different classifiers. The goal is to visualy compare their\nstatistical performance across thresholds using the ROC and DET curves. There\nis no particular reason why these classifiers are chosen other classifiers\navailable in scikit-learn.\n\n"
32+
"## Define the classifiers\n\nHere we define two different classifiers. The goal is to visually compare their\nstatistical performance across thresholds using the ROC and DET curves. There\nis no particular reason why these classifiers are chosen other classifiers\navailable in scikit-learn.\n\n"
3333
]
3434
},
3535
{

dev/_downloads/1b3f17ff0f112d5b77cbdb90f1c17046/plot_set_output.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@
6565

6666
# %%
6767
# Next we load the titanic dataset to demonstrate `set_output` with
68-
# :class:`compose.ColumnTransformer` and heterogenous data.
68+
# :class:`compose.ColumnTransformer` and heterogeneous data.
6969
from sklearn.datasets import fetch_openml
7070

7171
X, y = fetch_openml(

dev/_downloads/1dcd684ce26b8c407ec2c2d2101c5c73/plot_kernel_ridge_regression.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -122,7 +122,7 @@
122122
# The previous figure compares the learned model of KRR and SVR when both
123123
# complexity/regularization and bandwidth of the RBF kernel are optimized using
124124
# grid-search. The learned functions are very similar; however, fitting KRR is
125-
# approximatively 3-4 times faster than fitting SVR (both with grid-search).
125+
# approximately 3-4 times faster than fitting SVR (both with grid-search).
126126
#
127127
# Prediction of 100000 target values could be in theory approximately three
128128
# times faster with SVR since it has learned a sparse model using only

dev/_downloads/1f948ff6f5face5a362672c4e36dd01e/plot_mini_batch_kmeans.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -94,7 +94,7 @@
9494
},
9595
"outputs": [],
9696
"source": [
97-
"import matplotlib.pyplot as plt\n\nfig = plt.figure(figsize=(8, 3))\nfig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)\ncolors = [\"#4EACC5\", \"#FF9C34\", \"#4E9A06\"]\n\n# KMeans\nax = fig.add_subplot(1, 3, 1)\nfor k, col in zip(range(n_clusters), colors):\n my_members = k_means_labels == k\n cluster_center = k_means_cluster_centers[k]\n ax.plot(X[my_members, 0], X[my_members, 1], \"w\", markerfacecolor=col, marker=\".\")\n ax.plot(\n cluster_center[0],\n cluster_center[1],\n \"o\",\n markerfacecolor=col,\n markeredgecolor=\"k\",\n markersize=6,\n )\nax.set_title(\"KMeans\")\nax.set_xticks(())\nax.set_yticks(())\nplt.text(-3.5, 1.8, \"train time: %.2fs\\ninertia: %f\" % (t_batch, k_means.inertia_))\n\n# MiniBatchKMeans\nax = fig.add_subplot(1, 3, 2)\nfor k, col in zip(range(n_clusters), colors):\n my_members = mbk_means_labels == k\n cluster_center = mbk_means_cluster_centers[k]\n ax.plot(X[my_members, 0], X[my_members, 1], \"w\", markerfacecolor=col, marker=\".\")\n ax.plot(\n cluster_center[0],\n cluster_center[1],\n \"o\",\n markerfacecolor=col,\n markeredgecolor=\"k\",\n markersize=6,\n )\nax.set_title(\"MiniBatchKMeans\")\nax.set_xticks(())\nax.set_yticks(())\nplt.text(-3.5, 1.8, \"train time: %.2fs\\ninertia: %f\" % (t_mini_batch, mbk.inertia_))\n\n# Initialize the different array to all False\ndifferent = mbk_means_labels == 4\nax = fig.add_subplot(1, 3, 3)\n\nfor k in range(n_clusters):\n different += (k_means_labels == k) != (mbk_means_labels == k)\n\nidentic = np.logical_not(different)\nax.plot(X[identic, 0], X[identic, 1], \"w\", markerfacecolor=\"#bbbbbb\", marker=\".\")\nax.plot(X[different, 0], X[different, 1], \"w\", markerfacecolor=\"m\", marker=\".\")\nax.set_title(\"Difference\")\nax.set_xticks(())\nax.set_yticks(())\n\nplt.show()"
97+
"import matplotlib.pyplot as plt\n\nfig = plt.figure(figsize=(8, 3))\nfig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9)\ncolors = [\"#4EACC5\", \"#FF9C34\", \"#4E9A06\"]\n\n# KMeans\nax = fig.add_subplot(1, 3, 1)\nfor k, col in zip(range(n_clusters), colors):\n my_members = k_means_labels == k\n cluster_center = k_means_cluster_centers[k]\n ax.plot(X[my_members, 0], X[my_members, 1], \"w\", markerfacecolor=col, marker=\".\")\n ax.plot(\n cluster_center[0],\n cluster_center[1],\n \"o\",\n markerfacecolor=col,\n markeredgecolor=\"k\",\n markersize=6,\n )\nax.set_title(\"KMeans\")\nax.set_xticks(())\nax.set_yticks(())\nplt.text(-3.5, 1.8, \"train time: %.2fs\\ninertia: %f\" % (t_batch, k_means.inertia_))\n\n# MiniBatchKMeans\nax = fig.add_subplot(1, 3, 2)\nfor k, col in zip(range(n_clusters), colors):\n my_members = mbk_means_labels == k\n cluster_center = mbk_means_cluster_centers[k]\n ax.plot(X[my_members, 0], X[my_members, 1], \"w\", markerfacecolor=col, marker=\".\")\n ax.plot(\n cluster_center[0],\n cluster_center[1],\n \"o\",\n markerfacecolor=col,\n markeredgecolor=\"k\",\n markersize=6,\n )\nax.set_title(\"MiniBatchKMeans\")\nax.set_xticks(())\nax.set_yticks(())\nplt.text(-3.5, 1.8, \"train time: %.2fs\\ninertia: %f\" % (t_mini_batch, mbk.inertia_))\n\n# Initialize the different array to all False\ndifferent = mbk_means_labels == 4\nax = fig.add_subplot(1, 3, 3)\n\nfor k in range(n_clusters):\n different += (k_means_labels == k) != (mbk_means_labels == k)\n\nidentical = np.logical_not(different)\nax.plot(X[identical, 0], X[identical, 1], \"w\", markerfacecolor=\"#bbbbbb\", marker=\".\")\nax.plot(X[different, 0], X[different, 1], \"w\", markerfacecolor=\"m\", marker=\".\")\nax.set_title(\"Difference\")\nax.set_xticks(())\nax.set_yticks(())\n\nplt.show()"
9898
]
9999
}
100100
],

dev/_downloads/215c560d29193ab9b0a495609bc74802/plot_monotonic_constraints.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -83,7 +83,7 @@
8383
"cell_type": "markdown",
8484
"metadata": {},
8585
"source": [
86-
"\n## Using feature names to specify monotonic constraints\n\nNote that if the training data has feature names, it's possible to specifiy the\nmonotonic constraints by passing a dictionary:\n\n"
86+
"\n## Using feature names to specify monotonic constraints\n\nNote that if the training data has feature names, it's possible to specify the\nmonotonic constraints by passing a dictionary:\n\n"
8787
]
8888
},
8989
{

dev/_downloads/23a5a575578f08cc0071cc070953a655/plot_dbscan.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -83,7 +83,7 @@
8383
"cell_type": "markdown",
8484
"metadata": {},
8585
"source": [
86-
"## Plot results\n\nCore samples (large dots) and non-core samples (small dots) are color-coded\naccording to the asigned cluster. Samples tagged as noise are represented in\nblack.\n\n"
86+
"## Plot results\n\nCore samples (large dots) and non-core samples (small dots) are color-coded\naccording to the assigned cluster. Samples tagged as noise are represented in\nblack.\n\n"
8787
]
8888
},
8989
{

dev/_downloads/3735f7086bbd0007cd42d2c1f2b96f47/plot_mini_batch_kmeans.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -132,8 +132,8 @@
132132
for k in range(n_clusters):
133133
different += (k_means_labels == k) != (mbk_means_labels == k)
134134

135-
identic = np.logical_not(different)
136-
ax.plot(X[identic, 0], X[identic, 1], "w", markerfacecolor="#bbbbbb", marker=".")
135+
identical = np.logical_not(different)
136+
ax.plot(X[identical, 0], X[identical, 1], "w", markerfacecolor="#bbbbbb", marker=".")
137137
ax.plot(X[different, 0], X[different, 1], "w", markerfacecolor="m", marker=".")
138138
ax.set_title("Difference")
139139
ax.set_xticks(())

0 commit comments

Comments
 (0)