Skip to content

Commit 131a43a

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 768c01d0c625549681609371381bf5dfda51ed81
1 parent 1a1687c commit 131a43a

File tree

1,255 files changed

+4453
-4461
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,255 files changed

+4453
-4461
lines changed
Binary file not shown.

dev/_downloads/4f07b03421908788913e044918d8ed1e/plot_release_highlights_0_23_0.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -105,7 +105,7 @@
105105
X, y = make_blobs(random_state=rng)
106106
X = scipy.sparse.csr_matrix(X)
107107
X_train, X_test, _, y_test = train_test_split(X, y, random_state=rng)
108-
kmeans = KMeans(algorithm="elkan").fit(X_train)
108+
kmeans = KMeans(n_init="auto").fit(X_train)
109109
print(completeness_score(kmeans.predict(X_test), y_test))
110110

111111
##############################################################################
Binary file not shown.

dev/_downloads/923fcad5e07de1ce7dc8dcbd7327c178/plot_release_highlights_0_23_0.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@
6969
},
7070
"outputs": [],
7171
"source": [
72-
"import scipy\nimport numpy as np\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.cluster import KMeans\nfrom sklearn.datasets import make_blobs\nfrom sklearn.metrics import completeness_score\n\nrng = np.random.RandomState(0)\nX, y = make_blobs(random_state=rng)\nX = scipy.sparse.csr_matrix(X)\nX_train, X_test, _, y_test = train_test_split(X, y, random_state=rng)\nkmeans = KMeans(algorithm=\"elkan\").fit(X_train)\nprint(completeness_score(kmeans.predict(X_test), y_test))"
72+
"import scipy\nimport numpy as np\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.cluster import KMeans\nfrom sklearn.datasets import make_blobs\nfrom sklearn.metrics import completeness_score\n\nrng = np.random.RandomState(0)\nX, y = make_blobs(random_state=rng)\nX = scipy.sparse.csr_matrix(X)\nX_train, X_test, _, y_test = train_test_split(X, y, random_state=rng)\nkmeans = KMeans(n_init=\"auto\").fit(X_train)\nprint(completeness_score(kmeans.predict(X_test), y_test))"
7373
]
7474
},
7575
{

dev/_downloads/scikit-learn-docs.zip

10.9 KB
Binary file not shown.
1 Byte
-1 Bytes
57 Bytes
89 Bytes
9 Bytes

0 commit comments

Comments
 (0)