Skip to content

Commit 2e72de6

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 59612a22b3e7d87f81938707a835b860d101ff9f
1 parent ec2aee9 commit 2e72de6

File tree

1,086 files changed

+3241
-3235
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,086 files changed

+3241
-3235
lines changed
128 Bytes
Binary file not shown.
126 Bytes
Binary file not shown.

dev/_downloads/plot_random_forest_regression_multioutput.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"print(__doc__)\n\n# Author: Tim Head <[email protected]>\n#\n# License: BSD 3 clause\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.ensemble import RandomForestRegressor\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.multioutput import MultiOutputRegressor\n\n\n# Create a random dataset\nrng = np.random.RandomState(1)\nX = np.sort(200 * rng.rand(600, 1) - 100, axis=0)\ny = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T\ny += (0.5 - rng.rand(*y.shape))\n\nX_train, X_test, y_train, y_test = train_test_split(\n X, y, train_size=400, test_size=200, random_state=4)\n\nmax_depth = 30\nregr_multirf = MultiOutputRegressor(RandomForestRegressor(max_depth=max_depth,\n random_state=0))\nregr_multirf.fit(X_train, y_train)\n\nregr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2)\nregr_rf.fit(X_train, y_train)\n\n# Predict on new data\ny_multirf = regr_multirf.predict(X_test)\ny_rf = regr_rf.predict(X_test)\n\n# Plot the results\nplt.figure()\ns = 50\na = 0.4\nplt.scatter(y_test[:, 0], y_test[:, 1], edgecolor='k',\n c=\"navy\", s=s, marker=\"s\", alpha=a, label=\"Data\")\nplt.scatter(y_multirf[:, 0], y_multirf[:, 1], edgecolor='k',\n c=\"cornflowerblue\", s=s, alpha=a,\n label=\"Multi RF score=%.2f\" % regr_multirf.score(X_test, y_test))\nplt.scatter(y_rf[:, 0], y_rf[:, 1], edgecolor='k',\n c=\"c\", s=s, marker=\"^\", alpha=a,\n label=\"RF score=%.2f\" % regr_rf.score(X_test, y_test))\nplt.xlim([-6, 6])\nplt.ylim([-6, 6])\nplt.xlabel(\"target 1\")\nplt.ylabel(\"target 2\")\nplt.title(\"Comparing random forests and the multi-output meta estimator\")\nplt.legend()\nplt.show()"
29+
"print(__doc__)\n\n# Author: Tim Head <[email protected]>\n#\n# License: BSD 3 clause\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.ensemble import RandomForestRegressor\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.multioutput import MultiOutputRegressor\n\n\n# Create a random dataset\nrng = np.random.RandomState(1)\nX = np.sort(200 * rng.rand(600, 1) - 100, axis=0)\ny = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T\ny += (0.5 - rng.rand(*y.shape))\n\nX_train, X_test, y_train, y_test = train_test_split(\n X, y, train_size=400, test_size=200, random_state=4)\n\nmax_depth = 30\nregr_multirf = MultiOutputRegressor(RandomForestRegressor(n_estimators=100,\n max_depth=max_depth,\n random_state=0))\nregr_multirf.fit(X_train, y_train)\n\nregr_rf = RandomForestRegressor(n_estimators=100, max_depth=max_depth,\n random_state=2)\nregr_rf.fit(X_train, y_train)\n\n# Predict on new data\ny_multirf = regr_multirf.predict(X_test)\ny_rf = regr_rf.predict(X_test)\n\n# Plot the results\nplt.figure()\ns = 50\na = 0.4\nplt.scatter(y_test[:, 0], y_test[:, 1], edgecolor='k',\n c=\"navy\", s=s, marker=\"s\", alpha=a, label=\"Data\")\nplt.scatter(y_multirf[:, 0], y_multirf[:, 1], edgecolor='k',\n c=\"cornflowerblue\", s=s, alpha=a,\n label=\"Multi RF score=%.2f\" % regr_multirf.score(X_test, y_test))\nplt.scatter(y_rf[:, 0], y_rf[:, 1], edgecolor='k',\n c=\"c\", s=s, marker=\"^\", alpha=a,\n label=\"RF score=%.2f\" % regr_rf.score(X_test, y_test))\nplt.xlim([-6, 6])\nplt.ylim([-6, 6])\nplt.xlabel(\"target 1\")\nplt.ylabel(\"target 2\")\nplt.title(\"Comparing random forests and the multi-output meta estimator\")\nplt.legend()\nplt.show()"
3030
]
3131
}
3232
],

dev/_downloads/plot_random_forest_regression_multioutput.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -43,11 +43,13 @@
4343
X, y, train_size=400, test_size=200, random_state=4)
4444

4545
max_depth = 30
46-
regr_multirf = MultiOutputRegressor(RandomForestRegressor(max_depth=max_depth,
46+
regr_multirf = MultiOutputRegressor(RandomForestRegressor(n_estimators=100,
47+
max_depth=max_depth,
4748
random_state=0))
4849
regr_multirf.fit(X_train, y_train)
4950

50-
regr_rf = RandomForestRegressor(max_depth=max_depth, random_state=2)
51+
regr_rf = RandomForestRegressor(n_estimators=100, max_depth=max_depth,
52+
random_state=2)
5153
regr_rf.fit(X_train, y_train)
5254

5355
# Predict on new data

dev/_downloads/scikit-learn-docs.pdf

-21.2 KB
Binary file not shown.

dev/_images/iris.png

0 Bytes
-932 Bytes
-932 Bytes
-760 Bytes
-760 Bytes

0 commit comments

Comments
 (0)