Skip to content

Commit 3054a9d

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 49a937e974190b4ab20c7506052ce8a67c129da1
1 parent 81b53c1 commit 3054a9d

File tree

1,269 files changed

+4550
-4568
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,269 files changed

+4550
-4568
lines changed
Binary file not shown.

dev/_downloads/23e3d7fa2388aef4e9a60c4a6caf166d/plot_face_recognition.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"from time import time\nimport matplotlib.pyplot as plt\n\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.model_selection import RandomizedSearchCV\nfrom sklearn.datasets import fetch_lfw_people\nfrom sklearn.metrics import classification_report\nfrom sklearn.metrics import ConfusionMatrixDisplay\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.decomposition import PCA\nfrom sklearn.svm import SVC\nfrom sklearn.utils.fixes import loguniform"
29+
"from time import time\nimport matplotlib.pyplot as plt\n\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.model_selection import RandomizedSearchCV\nfrom sklearn.datasets import fetch_lfw_people\nfrom sklearn.metrics import classification_report\nfrom sklearn.metrics import ConfusionMatrixDisplay\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.decomposition import PCA\nfrom sklearn.svm import SVC\nfrom scipy.stats import loguniform"
3030
]
3131
},
3232
{
Binary file not shown.

dev/_downloads/733ff7845fe2f197ecd0c72afcf23651/plot_randomized_search.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"import numpy as np\n\nfrom time import time\nimport scipy.stats as stats\nfrom sklearn.utils.fixes import loguniform\n\nfrom sklearn.model_selection import GridSearchCV, RandomizedSearchCV\nfrom sklearn.datasets import load_digits\nfrom sklearn.linear_model import SGDClassifier\n\n# get some data\nX, y = load_digits(return_X_y=True, n_class=3)\n\n# build a classifier\nclf = SGDClassifier(loss=\"hinge\", penalty=\"elasticnet\", fit_intercept=True)\n\n\n# Utility function to report best scores\ndef report(results, n_top=3):\n for i in range(1, n_top + 1):\n candidates = np.flatnonzero(results[\"rank_test_score\"] == i)\n for candidate in candidates:\n print(\"Model with rank: {0}\".format(i))\n print(\n \"Mean validation score: {0:.3f} (std: {1:.3f})\".format(\n results[\"mean_test_score\"][candidate],\n results[\"std_test_score\"][candidate],\n )\n )\n print(\"Parameters: {0}\".format(results[\"params\"][candidate]))\n print(\"\")\n\n\n# specify parameters and distributions to sample from\nparam_dist = {\n \"average\": [True, False],\n \"l1_ratio\": stats.uniform(0, 1),\n \"alpha\": loguniform(1e-2, 1e0),\n}\n\n# run randomized search\nn_iter_search = 15\nrandom_search = RandomizedSearchCV(\n clf, param_distributions=param_dist, n_iter=n_iter_search\n)\n\nstart = time()\nrandom_search.fit(X, y)\nprint(\n \"RandomizedSearchCV took %.2f seconds for %d candidates parameter settings.\"\n % ((time() - start), n_iter_search)\n)\nreport(random_search.cv_results_)\n\n# use a full grid over all parameters\nparam_grid = {\n \"average\": [True, False],\n \"l1_ratio\": np.linspace(0, 1, num=10),\n \"alpha\": np.power(10, np.arange(-2, 1, dtype=float)),\n}\n\n# run grid search\ngrid_search = GridSearchCV(clf, param_grid=param_grid)\nstart = time()\ngrid_search.fit(X, y)\n\nprint(\n \"GridSearchCV took %.2f seconds for %d candidate parameter settings.\"\n % (time() - start, len(grid_search.cv_results_[\"params\"]))\n)\nreport(grid_search.cv_results_)"
29+
"import numpy as np\n\nfrom time import time\nimport scipy.stats as stats\n\nfrom sklearn.model_selection import GridSearchCV, RandomizedSearchCV\nfrom sklearn.datasets import load_digits\nfrom sklearn.linear_model import SGDClassifier\n\n# get some data\nX, y = load_digits(return_X_y=True, n_class=3)\n\n# build a classifier\nclf = SGDClassifier(loss=\"hinge\", penalty=\"elasticnet\", fit_intercept=True)\n\n\n# Utility function to report best scores\ndef report(results, n_top=3):\n for i in range(1, n_top + 1):\n candidates = np.flatnonzero(results[\"rank_test_score\"] == i)\n for candidate in candidates:\n print(\"Model with rank: {0}\".format(i))\n print(\n \"Mean validation score: {0:.3f} (std: {1:.3f})\".format(\n results[\"mean_test_score\"][candidate],\n results[\"std_test_score\"][candidate],\n )\n )\n print(\"Parameters: {0}\".format(results[\"params\"][candidate]))\n print(\"\")\n\n\n# specify parameters and distributions to sample from\nparam_dist = {\n \"average\": [True, False],\n \"l1_ratio\": stats.uniform(0, 1),\n \"alpha\": stats.loguniform(1e-2, 1e0),\n}\n\n# run randomized search\nn_iter_search = 15\nrandom_search = RandomizedSearchCV(\n clf, param_distributions=param_dist, n_iter=n_iter_search\n)\n\nstart = time()\nrandom_search.fit(X, y)\nprint(\n \"RandomizedSearchCV took %.2f seconds for %d candidates parameter settings.\"\n % ((time() - start), n_iter_search)\n)\nreport(random_search.cv_results_)\n\n# use a full grid over all parameters\nparam_grid = {\n \"average\": [True, False],\n \"l1_ratio\": np.linspace(0, 1, num=10),\n \"alpha\": np.power(10, np.arange(-2, 1, dtype=float)),\n}\n\n# run grid search\ngrid_search = GridSearchCV(clf, param_grid=param_grid)\nstart = time()\ngrid_search.fit(X, y)\n\nprint(\n \"GridSearchCV took %.2f seconds for %d candidate parameter settings.\"\n % (time() - start, len(grid_search.cv_results_[\"params\"]))\n)\nreport(grid_search.cv_results_)"
3030
]
3131
}
3232
],

dev/_downloads/b3a994b2ad66fe78bcedaf151ab78b07/plot_face_recognition.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
from sklearn.preprocessing import StandardScaler
2424
from sklearn.decomposition import PCA
2525
from sklearn.svm import SVC
26-
from sklearn.utils.fixes import loguniform
26+
from scipy.stats import loguniform
2727

2828

2929
# %%

dev/_downloads/c3bc3113489c0b7c9a698b430d691ddc/plot_compare_gpr_krr.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,7 @@
163163
},
164164
"outputs": [],
165165
"source": [
166-
"from sklearn.model_selection import RandomizedSearchCV\nfrom sklearn.utils.fixes import loguniform\n\nparam_distributions = {\n \"alpha\": loguniform(1e0, 1e3),\n \"kernel__length_scale\": loguniform(1e-2, 1e2),\n \"kernel__periodicity\": loguniform(1e0, 1e1),\n}\nkernel_ridge_tuned = RandomizedSearchCV(\n kernel_ridge,\n param_distributions=param_distributions,\n n_iter=500,\n random_state=0,\n)\nstart_time = time.time()\nkernel_ridge_tuned.fit(training_data, training_noisy_target)\nprint(f\"Time for KernelRidge fitting: {time.time() - start_time:.3f} seconds\")"
166+
"from sklearn.model_selection import RandomizedSearchCV\nfrom scipy.stats import loguniform\n\nparam_distributions = {\n \"alpha\": loguniform(1e0, 1e3),\n \"kernel__length_scale\": loguniform(1e-2, 1e2),\n \"kernel__periodicity\": loguniform(1e0, 1e1),\n}\nkernel_ridge_tuned = RandomizedSearchCV(\n kernel_ridge,\n param_distributions=param_distributions,\n n_iter=500,\n random_state=0,\n)\nstart_time = time.time()\nkernel_ridge_tuned.fit(training_data, training_noisy_target)\nprint(f\"Time for KernelRidge fitting: {time.time() - start_time:.3f} seconds\")"
167167
]
168168
},
169169
{

dev/_downloads/c499f9c8abaa56c9b615349a539cb6ae/plot_compare_gpr_krr.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -177,7 +177,7 @@
177177

178178
# %%
179179
from sklearn.model_selection import RandomizedSearchCV
180-
from sklearn.utils.fixes import loguniform
180+
from scipy.stats import loguniform
181181

182182
param_distributions = {
183183
"alpha": loguniform(1e0, 1e3),

dev/_downloads/f6e7c2e766100e8bcbb85bbb947d2893/plot_randomized_search.py

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,6 @@
2424

2525
from time import time
2626
import scipy.stats as stats
27-
from sklearn.utils.fixes import loguniform
2827

2928
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
3029
from sklearn.datasets import load_digits
@@ -57,7 +56,7 @@ def report(results, n_top=3):
5756
param_dist = {
5857
"average": [True, False],
5958
"l1_ratio": stats.uniform(0, 1),
60-
"alpha": loguniform(1e-2, 1e0),
59+
"alpha": stats.loguniform(1e-2, 1e0),
6160
}
6261

6362
# run randomized search

dev/_downloads/scikit-learn-docs.zip

-11.4 KB
Binary file not shown.
237 Bytes

0 commit comments

Comments
 (0)