Skip to content

Commit 462c0a5

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 9aae2adf9198172ec2f583db03c046434709c036
1 parent b393f89 commit 462c0a5

File tree

1,171 files changed

+4052
-4052
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,171 files changed

+4052
-4052
lines changed
Binary file not shown.

dev/_downloads/40f4aad91af595a370d7582e3a23bed7/plot_roc.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@
6262
},
6363
"outputs": [],
6464
"source": [
65-
"# First aggregate all false positive rates\nall_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))\n\n# Then interpolate all ROC curves at this points\nmean_tpr = np.zeros_like(all_fpr)\nfor i in range(n_classes):\n mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])\n\n# Finally average it and compute AUC\nmean_tpr /= n_classes\n\nfpr[\"macro\"] = all_fpr\ntpr[\"macro\"] = mean_tpr\nroc_auc[\"macro\"] = auc(fpr[\"macro\"], tpr[\"macro\"])\n\n# Plot all ROC curves\nplt.figure()\nplt.plot(\n fpr[\"micro\"],\n tpr[\"micro\"],\n label=\"micro-average ROC curve (area = {0:0.2f})\".format(roc_auc[\"micro\"]),\n color=\"deeppink\",\n linestyle=\":\",\n linewidth=4,\n)\n\nplt.plot(\n fpr[\"macro\"],\n tpr[\"macro\"],\n label=\"macro-average ROC curve (area = {0:0.2f})\".format(roc_auc[\"macro\"]),\n color=\"navy\",\n linestyle=\":\",\n linewidth=4,\n)\n\ncolors = cycle([\"aqua\", \"darkorange\", \"cornflowerblue\"])\nfor i, color in zip(range(n_classes), colors):\n plt.plot(\n fpr[i],\n tpr[i],\n color=color,\n lw=lw,\n label=\"ROC curve of class {0} (area = {1:0.2f})\".format(i, roc_auc[i]),\n )\n\nplt.plot([0, 1], [0, 1], \"k--\", lw=lw)\nplt.xlim([0.0, 1.0])\nplt.ylim([0.0, 1.05])\nplt.xlabel(\"False Positive Rate\")\nplt.ylabel(\"True Positive Rate\")\nplt.title(\"Some extension of Receiver operating characteristic to multiclass\")\nplt.legend(loc=\"lower right\")\nplt.show()"
65+
"# First aggregate all false positive rates\nall_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))\n\n# Then interpolate all ROC curves at these points\nmean_tpr = np.zeros_like(all_fpr)\nfor i in range(n_classes):\n mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])\n\n# Finally average it and compute AUC\nmean_tpr /= n_classes\n\nfpr[\"macro\"] = all_fpr\ntpr[\"macro\"] = mean_tpr\nroc_auc[\"macro\"] = auc(fpr[\"macro\"], tpr[\"macro\"])\n\n# Plot all ROC curves\nplt.figure()\nplt.plot(\n fpr[\"micro\"],\n tpr[\"micro\"],\n label=\"micro-average ROC curve (area = {0:0.2f})\".format(roc_auc[\"micro\"]),\n color=\"deeppink\",\n linestyle=\":\",\n linewidth=4,\n)\n\nplt.plot(\n fpr[\"macro\"],\n tpr[\"macro\"],\n label=\"macro-average ROC curve (area = {0:0.2f})\".format(roc_auc[\"macro\"]),\n color=\"navy\",\n linestyle=\":\",\n linewidth=4,\n)\n\ncolors = cycle([\"aqua\", \"darkorange\", \"cornflowerblue\"])\nfor i, color in zip(range(n_classes), colors):\n plt.plot(\n fpr[i],\n tpr[i],\n color=color,\n lw=lw,\n label=\"ROC curve of class {0} (area = {1:0.2f})\".format(i, roc_auc[i]),\n )\n\nplt.plot([0, 1], [0, 1], \"k--\", lw=lw)\nplt.xlim([0.0, 1.0])\nplt.ylim([0.0, 1.05])\nplt.xlabel(\"False Positive Rate\")\nplt.ylabel(\"True Positive Rate\")\nplt.title(\"Some extension of Receiver operating characteristic to multiclass\")\nplt.legend(loc=\"lower right\")\nplt.show()"
6666
]
6767
},
6868
{
Binary file not shown.

dev/_downloads/80fef09514fd851560e999a5b7daa303/plot_roc.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -109,7 +109,7 @@
109109
# First aggregate all false positive rates
110110
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
111111

112-
# Then interpolate all ROC curves at this points
112+
# Then interpolate all ROC curves at these points
113113
mean_tpr = np.zeros_like(all_fpr)
114114
for i in range(n_classes):
115115
mean_tpr += np.interp(all_fpr, fpr[i], tpr[i])

dev/_downloads/scikit-learn-docs.zip

-10.7 KB
Binary file not shown.
65 Bytes
187 Bytes
72 Bytes
-98 Bytes
206 Bytes

0 commit comments

Comments
 (0)