|
51 | 51 | },
|
52 | 52 | "outputs": [],
|
53 | 53 | "source": [
|
54 |
| - "from time import time\nfrom sklearn.pipeline import make_pipeline\nfrom sklearn.preprocessing import QuantileTransformer\nfrom sklearn.neural_network import MLPRegressor\n\nprint(\"Training MLPRegressor...\")\ntic = time()\nest = make_pipeline(\n QuantileTransformer(),\n MLPRegressor(\n hidden_layer_sizes=(50, 50), learning_rate_init=0.01, early_stopping=True\n ),\n)\nest.fit(X_train, y_train)\nprint(f\"done in {time() - tic:.3f}s\")\nprint(f\"Test R2 score: {est.score(X_test, y_test):.2f}\")" |
| 54 | + "from time import time\nfrom sklearn.pipeline import make_pipeline\nfrom sklearn.preprocessing import QuantileTransformer\nfrom sklearn.neural_network import MLPRegressor\n\nprint(\"Training MLPRegressor...\")\ntic = time()\nest = make_pipeline(\n QuantileTransformer(),\n MLPRegressor(\n hidden_layer_sizes=(30, 15),\n learning_rate_init=0.01,\n early_stopping=True,\n random_state=0,\n ),\n)\nest.fit(X_train, y_train)\nprint(f\"done in {time() - tic:.3f}s\")\nprint(f\"Test R2 score: {est.score(X_test, y_test):.2f}\")" |
55 | 55 | ]
|
56 | 56 | },
|
57 | 57 | {
|
|
87 | 87 | },
|
88 | 88 | "outputs": [],
|
89 | 89 | "source": [
|
90 |
| - "from sklearn.ensemble import HistGradientBoostingRegressor\n\nprint(\"Training HistGradientBoostingRegressor...\")\ntic = time()\nest = HistGradientBoostingRegressor()\nest.fit(X_train, y_train)\nprint(f\"done in {time() - tic:.3f}s\")\nprint(f\"Test R2 score: {est.score(X_test, y_test):.2f}\")" |
| 90 | + "from sklearn.ensemble import HistGradientBoostingRegressor\n\nprint(\"Training HistGradientBoostingRegressor...\")\ntic = time()\nest = HistGradientBoostingRegressor(random_state=0)\nest.fit(X_train, y_train)\nprint(f\"done in {time() - tic:.3f}s\")\nprint(f\"Test R2 score: {est.score(X_test, y_test):.2f}\")" |
91 | 91 | ]
|
92 | 92 | },
|
93 | 93 | {
|
|
130 | 130 | },
|
131 | 131 | "outputs": [],
|
132 | 132 | "source": [
|
133 |
| - "features = [\"AveOccup\", \"HouseAge\", (\"AveOccup\", \"HouseAge\")]\nprint(\"Computing partial dependence plots...\")\ntic = time()\n_, ax = plt.subplots(ncols=3, figsize=(9, 4))\ndisplay = PartialDependenceDisplay.from_estimator(\n est,\n X_train,\n features,\n kind=\"average\",\n n_jobs=3,\n grid_resolution=20,\n ax=ax,\n)\nprint(f\"done in {time() - tic:.3f}s\")\ndisplay.figure_.suptitle(\n \"Partial dependence of house value on non-___location features\\n\"\n \"for the California housing dataset, with Gradient Boosting\"\n)\ndisplay.figure_.subplots_adjust(wspace=0.4, hspace=0.3)" |
| 133 | + "features = [\"AveOccup\", \"HouseAge\", (\"AveOccup\", \"HouseAge\")]\nprint(\"Computing partial dependence plots...\")\ntic = time()\n_, ax = plt.subplots(ncols=3, figsize=(9, 4))\ndisplay = PartialDependenceDisplay.from_estimator(\n est,\n X_train,\n features,\n kind=\"average\",\n n_jobs=2,\n grid_resolution=10,\n ax=ax,\n)\nprint(f\"done in {time() - tic:.3f}s\")\ndisplay.figure_.suptitle(\n \"Partial dependence of house value on non-___location features\\n\"\n \"for the California housing dataset, with Gradient Boosting\"\n)\ndisplay.figure_.subplots_adjust(wspace=0.4, hspace=0.3)" |
134 | 134 | ]
|
135 | 135 | },
|
136 | 136 | {
|
|
148 | 148 | },
|
149 | 149 | "outputs": [],
|
150 | 150 | "source": [
|
151 |
| - "import numpy as np\nfrom mpl_toolkits.mplot3d import Axes3D\n\nfig = plt.figure()\n\nfeatures = (\"AveOccup\", \"HouseAge\")\npdp = partial_dependence(\n est, X_train, features=features, kind=\"average\", grid_resolution=20\n)\nXX, YY = np.meshgrid(pdp[\"values\"][0], pdp[\"values\"][1])\nZ = pdp.average[0].T\nax = Axes3D(fig)\nfig.add_axes(ax)\nsurf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu, edgecolor=\"k\")\nax.set_xlabel(features[0])\nax.set_ylabel(features[1])\nax.set_zlabel(\"Partial dependence\")\n# pretty init view\nax.view_init(elev=22, azim=122)\nplt.colorbar(surf)\nplt.suptitle(\n \"Partial dependence of house value on median\\n\"\n \"age and average occupancy, with Gradient Boosting\"\n)\nplt.subplots_adjust(top=0.9)\nplt.show()" |
| 151 | + "import numpy as np\nfrom mpl_toolkits.mplot3d import Axes3D\n\nfig = plt.figure()\n\nfeatures = (\"AveOccup\", \"HouseAge\")\npdp = partial_dependence(\n est, X_train, features=features, kind=\"average\", grid_resolution=10\n)\nXX, YY = np.meshgrid(pdp[\"values\"][0], pdp[\"values\"][1])\nZ = pdp.average[0].T\nax = Axes3D(fig)\nfig.add_axes(ax)\n\nsurf = ax.plot_surface(XX, YY, Z, rstride=1, cstride=1, cmap=plt.cm.BuPu, edgecolor=\"k\")\nax.set_xlabel(features[0])\nax.set_ylabel(features[1])\nax.set_zlabel(\"Partial dependence\")\n# pretty init view\nax.view_init(elev=22, azim=122)\nplt.colorbar(surf)\nplt.suptitle(\n \"Partial dependence of house value on median\\n\"\n \"age and average occupancy, with Gradient Boosting\"\n)\nplt.subplots_adjust(top=0.9)\nplt.show()" |
152 | 152 | ]
|
153 | 153 | }
|
154 | 154 | ],
|
|
0 commit comments