Skip to content

Commit 4f218d4

Browse files
committed
Pushing the docs to dev/ for branch: master, commit 9acc606e6000b8ca8bf6644783fec2ef1efe2e4c
1 parent 3e12eb2 commit 4f218d4

File tree

597 files changed

+1229
-1229
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

597 files changed

+1229
-1229
lines changed
-1 Bytes
Binary file not shown.
-1 Bytes
Binary file not shown.

dev/_downloads/plot_validation_curve.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"print(__doc__)\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nfrom sklearn.datasets import load_digits\nfrom sklearn.svm import SVC\nfrom sklearn.model_selection import validation_curve\n\ndigits = load_digits()\nX, y = digits.data, digits.target\n\nparam_range = np.logspace(-6, -1, 5)\ntrain_scores, test_scores = validation_curve(\n SVC(), X, y, param_name=\"gamma\", param_range=param_range,\n cv=10, scoring=\"accuracy\", n_jobs=1)\ntrain_scores_mean = np.mean(train_scores, axis=1)\ntrain_scores_std = np.std(train_scores, axis=1)\ntest_scores_mean = np.mean(test_scores, axis=1)\ntest_scores_std = np.std(test_scores, axis=1)\n\nplt.title(\"Validation Curve with SVM\")\nplt.xlabel(r\"$\\gamma$\")\nplt.ylabel(\"Score\")\nplt.ylim(0.0, 1.1)\nlw = 2\nplt.semilogx(param_range, train_scores_mean, label=\"Training score\",\n color=\"darkorange\", lw=lw)\nplt.fill_between(param_range, train_scores_mean - train_scores_std,\n train_scores_mean + train_scores_std, alpha=0.2,\n color=\"darkorange\", lw=lw)\nplt.semilogx(param_range, test_scores_mean, label=\"Cross-validation score\",\n color=\"navy\", lw=lw)\nplt.fill_between(param_range, test_scores_mean - test_scores_std,\n test_scores_mean + test_scores_std, alpha=0.2,\n color=\"navy\", lw=lw)\nplt.legend(loc=\"best\")\nplt.show()"
29+
"print(__doc__)\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\nfrom sklearn.datasets import load_digits\nfrom sklearn.svm import SVC\nfrom sklearn.model_selection import validation_curve\n\ndigits = load_digits()\nX, y = digits.data, digits.target\n\nparam_range = np.logspace(-6, -1, 5)\ntrain_scores, test_scores = validation_curve(\n SVC(), X, y, param_name=\"gamma\", param_range=param_range,\n cv=5, scoring=\"accuracy\", n_jobs=1)\ntrain_scores_mean = np.mean(train_scores, axis=1)\ntrain_scores_std = np.std(train_scores, axis=1)\ntest_scores_mean = np.mean(test_scores, axis=1)\ntest_scores_std = np.std(test_scores, axis=1)\n\nplt.title(\"Validation Curve with SVM\")\nplt.xlabel(r\"$\\gamma$\")\nplt.ylabel(\"Score\")\nplt.ylim(0.0, 1.1)\nlw = 2\nplt.semilogx(param_range, train_scores_mean, label=\"Training score\",\n color=\"darkorange\", lw=lw)\nplt.fill_between(param_range, train_scores_mean - train_scores_std,\n train_scores_mean + train_scores_std, alpha=0.2,\n color=\"darkorange\", lw=lw)\nplt.semilogx(param_range, test_scores_mean, label=\"Cross-validation score\",\n color=\"navy\", lw=lw)\nplt.fill_between(param_range, test_scores_mean - test_scores_std,\n test_scores_mean + test_scores_std, alpha=0.2,\n color=\"navy\", lw=lw)\nplt.legend(loc=\"best\")\nplt.show()"
3030
]
3131
}
3232
],

dev/_downloads/plot_validation_curve.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
param_range = np.logspace(-6, -1, 5)
2727
train_scores, test_scores = validation_curve(
2828
SVC(), X, y, param_name="gamma", param_range=param_range,
29-
cv=10, scoring="accuracy", n_jobs=1)
29+
cv=5, scoring="accuracy", n_jobs=1)
3030
train_scores_mean = np.mean(train_scores, axis=1)
3131
train_scores_std = np.std(train_scores, axis=1)
3232
test_scores_mean = np.mean(test_scores, axis=1)

dev/_downloads/scikit-learn-docs.pdf

14.5 KB
Binary file not shown.

dev/_images/iris.png

0 Bytes
919 Bytes
919 Bytes
-190 Bytes
-190 Bytes

0 commit comments

Comments
 (0)