Skip to content

Commit 513fb89

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 73f14ab9f94174ca6c193fbcccc429155d342951
1 parent 9703c97 commit 513fb89

File tree

1,308 files changed

+5726
-5756
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,308 files changed

+5726
-5756
lines changed

dev/.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: 06232f874800925db347a87e63dba2a0
3+
config: b3ea042e8b7a43591ee3589aabcbd59b
44
tags: 645f666f9bcd5a90fca523b33c5a78b7
Binary file not shown.

dev/_downloads/21b82d82985712b5de6347f382c77c86/plot_partial_dependence.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -148,7 +148,7 @@
148148
},
149149
"outputs": [],
150150
"source": [
151-
"from itertools import product\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\ndays = (\"Sun\", \"Mon\", \"Tue\", \"Wed\", \"Thu\", \"Fri\", \"Sat\")\nhours = tuple(range(24))\nxticklabels = [f\"{day}\\n{hour}:00\" for day, hour in product(days, hours)]\nxtick_start, xtick_period = 6, 12\n\nfig, axs = plt.subplots(nrows=2, figsize=(8, 6), sharey=True, sharex=True)\naverage_bike_rentals = bikes.frame.groupby([\"year\", \"season\", \"weekday\", \"hour\"]).mean(\n numeric_only=True\n)[\"count\"]\nfor ax, (idx, df) in zip(axs, average_bike_rentals.groupby(\"year\")):\n df.groupby(\"season\").plot(ax=ax, legend=True)\n\n # decorate the plot\n ax.set_xticks(\n np.linspace(\n start=xtick_start,\n stop=len(xticklabels),\n num=len(xticklabels) // xtick_period,\n )\n )\n ax.set_xticklabels(xticklabels[xtick_start::xtick_period])\n ax.set_xlabel(\"\")\n ax.set_ylabel(\"Average number of bike rentals\")\n ax.set_title(\n f\"Bike rental for {'2010 (train set)' if idx == 0.0 else '2011 (test set)'}\"\n )\n ax.set_ylim(0, 1_000)\n ax.set_xlim(0, len(xticklabels))\n ax.legend(loc=2)"
151+
"from itertools import product\n\nimport matplotlib.pyplot as plt\nimport numpy as np\n\ndays = (\"Sun\", \"Mon\", \"Tue\", \"Wed\", \"Thu\", \"Fri\", \"Sat\")\nhours = tuple(range(24))\nxticklabels = [f\"{day}\\n{hour}:00\" for day, hour in product(days, hours)]\nxtick_start, xtick_period = 6, 12\n\nfig, axs = plt.subplots(nrows=2, figsize=(8, 6), sharey=True, sharex=True)\naverage_bike_rentals = bikes.frame.groupby(\n [\"year\", \"season\", \"weekday\", \"hour\"], observed=True\n).mean(numeric_only=True)[\"count\"]\nfor ax, (idx, df) in zip(axs, average_bike_rentals.groupby(\"year\")):\n df.groupby(\"season\", observed=True).plot(ax=ax, legend=True)\n\n # decorate the plot\n ax.set_xticks(\n np.linspace(\n start=xtick_start,\n stop=len(xticklabels),\n num=len(xticklabels) // xtick_period,\n )\n )\n ax.set_xticklabels(xticklabels[xtick_start::xtick_period])\n ax.set_xlabel(\"\")\n ax.set_ylabel(\"Average number of bike rentals\")\n ax.set_title(\n f\"Bike rental for {'2010 (train set)' if idx == 0.0 else '2011 (test set)'}\"\n )\n ax.set_ylim(0, 1_000)\n ax.set_xlim(0, len(xticklabels))\n ax.legend(loc=2)"
152152
]
153153
},
154154
{
Binary file not shown.

dev/_downloads/bcd609cfe29c9da1f51c848e18b89c76/plot_partial_dependence.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -110,11 +110,11 @@
110110
xtick_start, xtick_period = 6, 12
111111

112112
fig, axs = plt.subplots(nrows=2, figsize=(8, 6), sharey=True, sharex=True)
113-
average_bike_rentals = bikes.frame.groupby(["year", "season", "weekday", "hour"]).mean(
114-
numeric_only=True
115-
)["count"]
113+
average_bike_rentals = bikes.frame.groupby(
114+
["year", "season", "weekday", "hour"], observed=True
115+
).mean(numeric_only=True)["count"]
116116
for ax, (idx, df) in zip(axs, average_bike_rentals.groupby("year")):
117-
df.groupby("season").plot(ax=ax, legend=True)
117+
df.groupby("season", observed=True).plot(ax=ax, legend=True)
118118

119119
# decorate the plot
120120
ax.set_xticks(

0 commit comments

Comments
 (0)