Skip to content

Commit 611b77f

Browse files
committed
Pushing the docs to 1.3/ for branch: 1.3.X, commit 55a65a2fa5653257225d7e184da3d0c00ff852b1
1 parent 82cc219 commit 611b77f

File tree

3,179 files changed

+29234
-18267
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

3,179 files changed

+29234
-18267
lines changed

1.3/.buildinfo

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
11
# Sphinx build info version 1
22
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
3-
config: afc023663d94539ff18489a9370c996e
3+
config: 75bbb5dd8822aca30c6a475439414f41
44
tags: 645f666f9bcd5a90fca523b33c5a78b7

1.3/_downloads/006fc185672e58b056a5c134db26935c/plot_coin_segmentation.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,7 @@
5353
"name": "python",
5454
"nbconvert_exporter": "python",
5555
"pygments_lexer": "ipython3",
56-
"version": "3.9.16"
56+
"version": "3.9.18"
5757
}
5858
},
5959
"nbformat": 4,

1.3/_downloads/023324c27491610e7c0ccff87c59abf9/plot_kernel_pca.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
==========
55
66
This example shows the difference between the Principal Components Analysis
7-
(:class:`~sklearn.decomposition.PCA`) and its kernalized version
7+
(:class:`~sklearn.decomposition.PCA`) and its kernelized version
88
(:class:`~sklearn.decomposition.KernelPCA`).
99
1010
On the one hand, we show that :class:`~sklearn.decomposition.KernelPCA` is able

1.3/_downloads/02f111fb3dd79805b161e14c564184fc/plot_sgd_comparison.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
"name": "python",
3636
"nbconvert_exporter": "python",
3737
"pygments_lexer": "ipython3",
38-
"version": "3.9.16"
38+
"version": "3.9.18"
3939
}
4040
},
4141
"nbformat": 4,

1.3/_downloads/0486bf9e537e44cedd2a236d034bcd90/plot_pcr_vs_pls.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -114,7 +114,7 @@
114114
"name": "python",
115115
"nbconvert_exporter": "python",
116116
"pygments_lexer": "ipython3",
117-
"version": "3.9.16"
117+
"version": "3.9.18"
118118
}
119119
},
120120
"nbformat": 4,

1.3/_downloads/055e8313e28f2f3b5fd508054dfe5fe0/plot_roc_crossval.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@
7878
"name": "python",
7979
"nbconvert_exporter": "python",
8080
"pygments_lexer": "ipython3",
81-
"version": "3.9.16"
81+
"version": "3.9.18"
8282
}
8383
},
8484
"nbformat": 4,

1.3/_downloads/05ca8a4e90b4cc2acd69f9e24b4a1f3a/plot_classifier_chain_yeast.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
"name": "python",
3636
"nbconvert_exporter": "python",
3737
"pygments_lexer": "ipython3",
38-
"version": "3.9.16"
38+
"version": "3.9.18"
3939
}
4040
},
4141
"nbformat": 4,

1.3/_downloads/061854726c268bcdae5cd1c330cf8c75/plot_sgd_penalties.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@
3535
"name": "python",
3636
"nbconvert_exporter": "python",
3737
"pygments_lexer": "ipython3",
38-
"version": "3.9.16"
38+
"version": "3.9.18"
3939
}
4040
},
4141
"nbformat": 4,

1.3/_downloads/067cd5d39b097d2c49dd98f563dac13a/plot_iterative_imputer_variants_comparison.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
"cell_type": "markdown",
55
"metadata": {},
66
"source": [
7-
"\n# Imputing missing values with variants of IterativeImputer\n\n.. currentmodule:: sklearn\n\nThe :class:`~impute.IterativeImputer` class is very flexible - it can be\nused with a variety of estimators to do round-robin regression, treating every\nvariable as an output in turn.\n\nIn this example we compare some estimators for the purpose of missing feature\nimputation with :class:`~impute.IterativeImputer`:\n\n* :class:`~linear_model.BayesianRidge`: regularized linear regression\n* :class:`~tree.RandomForestRegressor`: Forests of randomized trees regression\n* :func:`~pipeline.make_pipeline`(:class:`~kernel_approximation.Nystroem`,\n :class:`~linear_model.Ridge`): a pipeline with the expansion of a degree 2\n polynomial kernel and regularized linear regression\n* :class:`~neighbors.KNeighborsRegressor`: comparable to other KNN\n imputation approaches\n\nOf particular interest is the ability of\n:class:`~impute.IterativeImputer` to mimic the behavior of missForest, a\npopular imputation package for R.\n\nNote that :class:`~neighbors.KNeighborsRegressor` is different from KNN\nimputation, which learns from samples with missing values by using a distance\nmetric that accounts for missing values, rather than imputing them.\n\nThe goal is to compare different estimators to see which one is best for the\n:class:`~impute.IterativeImputer` when using a\n:class:`~linear_model.BayesianRidge` estimator on the California housing\ndataset with a single value randomly removed from each row.\n\nFor this particular pattern of missing values we see that\n:class:`~linear_model.BayesianRidge` and\n:class:`~ensemble.RandomForestRegressor` give the best results.\n\nIt should be noted that some estimators such as\n:class:`~ensemble.HistGradientBoostingRegressor` can natively deal with\nmissing features and are often recommended over building pipelines with\ncomplex and costly missing values imputation strategies.\n"
7+
"\n# Imputing missing values with variants of IterativeImputer\n\n.. currentmodule:: sklearn\n\nThe :class:`~impute.IterativeImputer` class is very flexible - it can be\nused with a variety of estimators to do round-robin regression, treating every\nvariable as an output in turn.\n\nIn this example we compare some estimators for the purpose of missing feature\nimputation with :class:`~impute.IterativeImputer`:\n\n* :class:`~linear_model.BayesianRidge`: regularized linear regression\n* :class:`~ensemble.RandomForestRegressor`: Forests of randomized trees regression\n* :func:`~pipeline.make_pipeline` (:class:`~kernel_approximation.Nystroem`,\n :class:`~linear_model.Ridge`): a pipeline with the expansion of a degree 2\n polynomial kernel and regularized linear regression\n* :class:`~neighbors.KNeighborsRegressor`: comparable to other KNN\n imputation approaches\n\nOf particular interest is the ability of\n:class:`~impute.IterativeImputer` to mimic the behavior of missForest, a\npopular imputation package for R.\n\nNote that :class:`~neighbors.KNeighborsRegressor` is different from KNN\nimputation, which learns from samples with missing values by using a distance\nmetric that accounts for missing values, rather than imputing them.\n\nThe goal is to compare different estimators to see which one is best for the\n:class:`~impute.IterativeImputer` when using a\n:class:`~linear_model.BayesianRidge` estimator on the California housing\ndataset with a single value randomly removed from each row.\n\nFor this particular pattern of missing values we see that\n:class:`~linear_model.BayesianRidge` and\n:class:`~ensemble.RandomForestRegressor` give the best results.\n\nIt should be noted that some estimators such as\n:class:`~ensemble.HistGradientBoostingRegressor` can natively deal with\nmissing features and are often recommended over building pipelines with\ncomplex and costly missing values imputation strategies.\n"
88
]
99
},
1010
{
@@ -35,7 +35,7 @@
3535
"name": "python",
3636
"nbconvert_exporter": "python",
3737
"pygments_lexer": "ipython3",
38-
"version": "3.9.16"
38+
"version": "3.9.18"
3939
}
4040
},
4141
"nbformat": 4,

1.3/_downloads/06cfc926acb27652fb2aa5bfc583e7cb/plot_hashing_vs_dict_vectorizer.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -323,7 +323,7 @@
323323
"name": "python",
324324
"nbconvert_exporter": "python",
325325
"pygments_lexer": "ipython3",
326-
"version": "3.9.16"
326+
"version": "3.9.18"
327327
}
328328
},
329329
"nbformat": 4,

0 commit comments

Comments
 (0)