Skip to content

Commit 726e913

Browse files
committed
Pushing the docs to dev/ for branch: main, commit b98dc797c480b1b9495f918e201d45ee07f29feb
1 parent 4978024 commit 726e913

File tree

1,580 files changed

+6501
-6417
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,580 files changed

+6501
-6417
lines changed
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.

dev/_downloads/067cd5d39b097d2c49dd98f563dac13a/plot_iterative_imputer_variants_comparison.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@
1515
},
1616
"outputs": [],
1717
"source": [
18-
"# Authors: The scikit-learn developers\n# SPDX-License-Identifier: BSD-3-Clause\n\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport pandas as pd\n\nfrom sklearn.datasets import fetch_california_housing\nfrom sklearn.ensemble import RandomForestRegressor\n\n# To use this experimental feature, we need to explicitly ask for it:\nfrom sklearn.experimental import enable_iterative_imputer # noqa\nfrom sklearn.impute import IterativeImputer, SimpleImputer\nfrom sklearn.kernel_approximation import Nystroem\nfrom sklearn.linear_model import BayesianRidge, Ridge\nfrom sklearn.model_selection import cross_val_score\nfrom sklearn.neighbors import KNeighborsRegressor\nfrom sklearn.pipeline import make_pipeline\n\nN_SPLITS = 5\n\nrng = np.random.RandomState(0)\n\nX_full, y_full = fetch_california_housing(return_X_y=True)\n# ~2k samples is enough for the purpose of the example.\n# Remove the following two lines for a slower run with different error bars.\nX_full = X_full[::10]\ny_full = y_full[::10]\nn_samples, n_features = X_full.shape\n\n# Estimate the score on the entire dataset, with no missing values\nbr_estimator = BayesianRidge()\nscore_full_data = pd.DataFrame(\n cross_val_score(\n br_estimator, X_full, y_full, scoring=\"neg_mean_squared_error\", cv=N_SPLITS\n ),\n columns=[\"Full Data\"],\n)\n\n# Add a single missing value to each row\nX_missing = X_full.copy()\ny_missing = y_full\nmissing_samples = np.arange(n_samples)\nmissing_features = rng.choice(n_features, n_samples, replace=True)\nX_missing[missing_samples, missing_features] = np.nan\n\n# Estimate the score after imputation (mean and median strategies)\nscore_simple_imputer = pd.DataFrame()\nfor strategy in (\"mean\", \"median\"):\n estimator = make_pipeline(\n SimpleImputer(missing_values=np.nan, strategy=strategy), br_estimator\n )\n score_simple_imputer[strategy] = cross_val_score(\n estimator, X_missing, y_missing, scoring=\"neg_mean_squared_error\", cv=N_SPLITS\n )\n\n# Estimate the score after iterative imputation of the missing values\n# with different estimators\nestimators = [\n BayesianRidge(),\n RandomForestRegressor(\n # We tuned the hyperparameters of the RandomForestRegressor to get a good\n # enough predictive performance for a restricted execution time.\n n_estimators=4,\n max_depth=10,\n bootstrap=True,\n max_samples=0.5,\n n_jobs=2,\n random_state=0,\n ),\n make_pipeline(\n Nystroem(kernel=\"polynomial\", degree=2, random_state=0), Ridge(alpha=1e3)\n ),\n KNeighborsRegressor(n_neighbors=15),\n]\nscore_iterative_imputer = pd.DataFrame()\n# iterative imputer is sensible to the tolerance and\n# dependent on the estimator used internally.\n# we tuned the tolerance to keep this example run with limited computational\n# resources while not changing the results too much compared to keeping the\n# stricter default value for the tolerance parameter.\ntolerances = (1e-3, 1e-1, 1e-1, 1e-2)\nfor impute_estimator, tol in zip(estimators, tolerances):\n estimator = make_pipeline(\n IterativeImputer(\n random_state=0, estimator=impute_estimator, max_iter=25, tol=tol\n ),\n br_estimator,\n )\n score_iterative_imputer[impute_estimator.__class__.__name__] = cross_val_score(\n estimator, X_missing, y_missing, scoring=\"neg_mean_squared_error\", cv=N_SPLITS\n )\n\nscores = pd.concat(\n [score_full_data, score_simple_imputer, score_iterative_imputer],\n keys=[\"Original\", \"SimpleImputer\", \"IterativeImputer\"],\n axis=1,\n)\n\n# plot california housing results\nfig, ax = plt.subplots(figsize=(13, 6))\nmeans = -scores.mean()\nerrors = scores.std()\nmeans.plot.barh(xerr=errors, ax=ax)\nax.set_title(\"California Housing Regression with Different Imputation Methods\")\nax.set_xlabel(\"MSE (smaller is better)\")\nax.set_yticks(np.arange(means.shape[0]))\nax.set_yticklabels([\" w/ \".join(label) for label in means.index.tolist()])\nplt.tight_layout(pad=1)\nplt.show()"
18+
"# Authors: The scikit-learn developers\n# SPDX-License-Identifier: BSD-3-Clause\n\nimport matplotlib.pyplot as plt\nimport numpy as np\nimport pandas as pd\n\nfrom sklearn.datasets import fetch_california_housing\nfrom sklearn.ensemble import RandomForestRegressor\n\n# To use this experimental feature, we need to explicitly ask for it:\nfrom sklearn.experimental import enable_iterative_imputer # noqa: F401\nfrom sklearn.impute import IterativeImputer, SimpleImputer\nfrom sklearn.kernel_approximation import Nystroem\nfrom sklearn.linear_model import BayesianRidge, Ridge\nfrom sklearn.model_selection import cross_val_score\nfrom sklearn.neighbors import KNeighborsRegressor\nfrom sklearn.pipeline import make_pipeline\n\nN_SPLITS = 5\n\nrng = np.random.RandomState(0)\n\nX_full, y_full = fetch_california_housing(return_X_y=True)\n# ~2k samples is enough for the purpose of the example.\n# Remove the following two lines for a slower run with different error bars.\nX_full = X_full[::10]\ny_full = y_full[::10]\nn_samples, n_features = X_full.shape\n\n# Estimate the score on the entire dataset, with no missing values\nbr_estimator = BayesianRidge()\nscore_full_data = pd.DataFrame(\n cross_val_score(\n br_estimator, X_full, y_full, scoring=\"neg_mean_squared_error\", cv=N_SPLITS\n ),\n columns=[\"Full Data\"],\n)\n\n# Add a single missing value to each row\nX_missing = X_full.copy()\ny_missing = y_full\nmissing_samples = np.arange(n_samples)\nmissing_features = rng.choice(n_features, n_samples, replace=True)\nX_missing[missing_samples, missing_features] = np.nan\n\n# Estimate the score after imputation (mean and median strategies)\nscore_simple_imputer = pd.DataFrame()\nfor strategy in (\"mean\", \"median\"):\n estimator = make_pipeline(\n SimpleImputer(missing_values=np.nan, strategy=strategy), br_estimator\n )\n score_simple_imputer[strategy] = cross_val_score(\n estimator, X_missing, y_missing, scoring=\"neg_mean_squared_error\", cv=N_SPLITS\n )\n\n# Estimate the score after iterative imputation of the missing values\n# with different estimators\nestimators = [\n BayesianRidge(),\n RandomForestRegressor(\n # We tuned the hyperparameters of the RandomForestRegressor to get a good\n # enough predictive performance for a restricted execution time.\n n_estimators=4,\n max_depth=10,\n bootstrap=True,\n max_samples=0.5,\n n_jobs=2,\n random_state=0,\n ),\n make_pipeline(\n Nystroem(kernel=\"polynomial\", degree=2, random_state=0), Ridge(alpha=1e3)\n ),\n KNeighborsRegressor(n_neighbors=15),\n]\nscore_iterative_imputer = pd.DataFrame()\n# iterative imputer is sensible to the tolerance and\n# dependent on the estimator used internally.\n# we tuned the tolerance to keep this example run with limited computational\n# resources while not changing the results too much compared to keeping the\n# stricter default value for the tolerance parameter.\ntolerances = (1e-3, 1e-1, 1e-1, 1e-2)\nfor impute_estimator, tol in zip(estimators, tolerances):\n estimator = make_pipeline(\n IterativeImputer(\n random_state=0, estimator=impute_estimator, max_iter=25, tol=tol\n ),\n br_estimator,\n )\n score_iterative_imputer[impute_estimator.__class__.__name__] = cross_val_score(\n estimator, X_missing, y_missing, scoring=\"neg_mean_squared_error\", cv=N_SPLITS\n )\n\nscores = pd.concat(\n [score_full_data, score_simple_imputer, score_iterative_imputer],\n keys=[\"Original\", \"SimpleImputer\", \"IterativeImputer\"],\n axis=1,\n)\n\n# plot california housing results\nfig, ax = plt.subplots(figsize=(13, 6))\nmeans = -scores.mean()\nerrors = scores.std()\nmeans.plot.barh(xerr=errors, ax=ax)\nax.set_title(\"California Housing Regression with Different Imputation Methods\")\nax.set_xlabel(\"MSE (smaller is better)\")\nax.set_yticks(np.arange(means.shape[0]))\nax.set_yticklabels([\" w/ \".join(label) for label in means.index.tolist()])\nplt.tight_layout(pad=1)\nplt.show()"
1919
]
2020
}
2121
],
Binary file not shown.

0 commit comments

Comments
 (0)