Skip to content

Commit 8bc5ae5

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 28a054c7c3f907cb37a6780e41eaea2ca3c0eceb
1 parent e710d5e commit 8bc5ae5

File tree

1,211 files changed

+4526
-4369
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,211 files changed

+4526
-4369
lines changed
Binary file not shown.

dev/_downloads/2f930acda654766f8ba0fee08887bb41/plot_affinity_propagation.py

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,15 +13,17 @@
1313
from sklearn import metrics
1414
from sklearn.datasets import make_blobs
1515

16-
# #############################################################################
16+
# %%
1717
# Generate sample data
18+
# --------------------
1819
centers = [[1, 1], [-1, -1], [1, -1]]
1920
X, labels_true = make_blobs(
2021
n_samples=300, centers=centers, cluster_std=0.5, random_state=0
2122
)
2223

23-
# #############################################################################
24+
# %%
2425
# Compute Affinity Propagation
26+
# ----------------------------
2527
af = AffinityPropagation(preference=-50, random_state=0).fit(X)
2628
cluster_centers_indices = af.cluster_centers_indices_
2729
labels = af.labels_
@@ -42,8 +44,9 @@
4244
% metrics.silhouette_score(X, labels, metric="sqeuclidean")
4345
)
4446

45-
# #############################################################################
47+
# %%
4648
# Plot result
49+
# -----------
4750
import matplotlib.pyplot as plt
4851
from itertools import cycle
4952

Binary file not shown.

dev/_downloads/91999ecc168932f9034d0cbc1cc248fa/plot_affinity_propagation.ipynb

Lines changed: 55 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,61 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"from sklearn.cluster import AffinityPropagation\nfrom sklearn import metrics\nfrom sklearn.datasets import make_blobs\n\n# #############################################################################\n# Generate sample data\ncenters = [[1, 1], [-1, -1], [1, -1]]\nX, labels_true = make_blobs(\n n_samples=300, centers=centers, cluster_std=0.5, random_state=0\n)\n\n# #############################################################################\n# Compute Affinity Propagation\naf = AffinityPropagation(preference=-50, random_state=0).fit(X)\ncluster_centers_indices = af.cluster_centers_indices_\nlabels = af.labels_\n\nn_clusters_ = len(cluster_centers_indices)\n\nprint(\"Estimated number of clusters: %d\" % n_clusters_)\nprint(\"Homogeneity: %0.3f\" % metrics.homogeneity_score(labels_true, labels))\nprint(\"Completeness: %0.3f\" % metrics.completeness_score(labels_true, labels))\nprint(\"V-measure: %0.3f\" % metrics.v_measure_score(labels_true, labels))\nprint(\"Adjusted Rand Index: %0.3f\" % metrics.adjusted_rand_score(labels_true, labels))\nprint(\n \"Adjusted Mutual Information: %0.3f\"\n % metrics.adjusted_mutual_info_score(labels_true, labels)\n)\nprint(\n \"Silhouette Coefficient: %0.3f\"\n % metrics.silhouette_score(X, labels, metric=\"sqeuclidean\")\n)\n\n# #############################################################################\n# Plot result\nimport matplotlib.pyplot as plt\nfrom itertools import cycle\n\nplt.close(\"all\")\nplt.figure(1)\nplt.clf()\n\ncolors = cycle(\"bgrcmykbgrcmykbgrcmykbgrcmyk\")\nfor k, col in zip(range(n_clusters_), colors):\n class_members = labels == k\n cluster_center = X[cluster_centers_indices[k]]\n plt.plot(X[class_members, 0], X[class_members, 1], col + \".\")\n plt.plot(\n cluster_center[0],\n cluster_center[1],\n \"o\",\n markerfacecolor=col,\n markeredgecolor=\"k\",\n markersize=14,\n )\n for x in X[class_members]:\n plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)\n\nplt.title(\"Estimated number of clusters: %d\" % n_clusters_)\nplt.show()"
29+
"from sklearn.cluster import AffinityPropagation\nfrom sklearn import metrics\nfrom sklearn.datasets import make_blobs"
30+
]
31+
},
32+
{
33+
"cell_type": "markdown",
34+
"metadata": {},
35+
"source": [
36+
"## Generate sample data\n\n"
37+
]
38+
},
39+
{
40+
"cell_type": "code",
41+
"execution_count": null,
42+
"metadata": {
43+
"collapsed": false
44+
},
45+
"outputs": [],
46+
"source": [
47+
"centers = [[1, 1], [-1, -1], [1, -1]]\nX, labels_true = make_blobs(\n n_samples=300, centers=centers, cluster_std=0.5, random_state=0\n)"
48+
]
49+
},
50+
{
51+
"cell_type": "markdown",
52+
"metadata": {},
53+
"source": [
54+
"## Compute Affinity Propagation\n\n"
55+
]
56+
},
57+
{
58+
"cell_type": "code",
59+
"execution_count": null,
60+
"metadata": {
61+
"collapsed": false
62+
},
63+
"outputs": [],
64+
"source": [
65+
"af = AffinityPropagation(preference=-50, random_state=0).fit(X)\ncluster_centers_indices = af.cluster_centers_indices_\nlabels = af.labels_\n\nn_clusters_ = len(cluster_centers_indices)\n\nprint(\"Estimated number of clusters: %d\" % n_clusters_)\nprint(\"Homogeneity: %0.3f\" % metrics.homogeneity_score(labels_true, labels))\nprint(\"Completeness: %0.3f\" % metrics.completeness_score(labels_true, labels))\nprint(\"V-measure: %0.3f\" % metrics.v_measure_score(labels_true, labels))\nprint(\"Adjusted Rand Index: %0.3f\" % metrics.adjusted_rand_score(labels_true, labels))\nprint(\n \"Adjusted Mutual Information: %0.3f\"\n % metrics.adjusted_mutual_info_score(labels_true, labels)\n)\nprint(\n \"Silhouette Coefficient: %0.3f\"\n % metrics.silhouette_score(X, labels, metric=\"sqeuclidean\")\n)"
66+
]
67+
},
68+
{
69+
"cell_type": "markdown",
70+
"metadata": {},
71+
"source": [
72+
"## Plot result\n\n"
73+
]
74+
},
75+
{
76+
"cell_type": "code",
77+
"execution_count": null,
78+
"metadata": {
79+
"collapsed": false
80+
},
81+
"outputs": [],
82+
"source": [
83+
"import matplotlib.pyplot as plt\nfrom itertools import cycle\n\nplt.close(\"all\")\nplt.figure(1)\nplt.clf()\n\ncolors = cycle(\"bgrcmykbgrcmykbgrcmykbgrcmyk\")\nfor k, col in zip(range(n_clusters_), colors):\n class_members = labels == k\n cluster_center = X[cluster_centers_indices[k]]\n plt.plot(X[class_members, 0], X[class_members, 1], col + \".\")\n plt.plot(\n cluster_center[0],\n cluster_center[1],\n \"o\",\n markerfacecolor=col,\n markeredgecolor=\"k\",\n markersize=14,\n )\n for x in X[class_members]:\n plt.plot([cluster_center[0], x[0]], [cluster_center[1], x[1]], col)\n\nplt.title(\"Estimated number of clusters: %d\" % n_clusters_)\nplt.show()"
3084
]
3185
}
3286
],

dev/_downloads/scikit-learn-docs.zip

-12.4 KB
Binary file not shown.
-162 Bytes
-123 Bytes
190 Bytes
-497 Bytes
-4 Bytes

0 commit comments

Comments
 (0)