Skip to content

Commit 9245f2c

Browse files
committed
Pushing the docs to dev/ for branch: master, commit be305cebaf41f9f4616e540b686cf506c1b96875
1 parent 1440127 commit 9245f2c

File tree

941 files changed

+2693
-2634
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

941 files changed

+2693
-2634
lines changed
1 Byte
Binary file not shown.
1 Byte
Binary file not shown.

dev/_downloads/plot_sparse_cov.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@
7878
"execution_count": null,
7979
"cell_type": "code",
8080
"source": [
81-
"plt.figure(figsize=(10, 6))\nplt.subplots_adjust(left=0.02, right=0.98)\n\n# plot the covariances\ncovs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_),\n ('GraphLasso', cov_), ('True', cov)]\nvmax = cov_.max()\nfor i, (name, this_cov) in enumerate(covs):\n plt.subplot(2, 4, i + 1)\n plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax,\n cmap=plt.cm.RdBu_r)\n plt.xticks(())\n plt.yticks(())\n plt.title('%s covariance' % name)\n\n\n# plot the precisions\nprecs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_),\n ('GraphLasso', prec_), ('True', prec)]\nvmax = .9 * prec_.max()\nfor i, (name, this_prec) in enumerate(precs):\n ax = plt.subplot(2, 4, i + 5)\n plt.imshow(np.ma.masked_equal(this_prec, 0),\n interpolation='nearest', vmin=-vmax, vmax=vmax,\n cmap=plt.cm.RdBu_r)\n plt.xticks(())\n plt.yticks(())\n plt.title('%s precision' % name)\n ax.set_axis_bgcolor('.7')\n\n# plot the model selection metric\nplt.figure(figsize=(4, 3))\nplt.axes([.2, .15, .75, .7])\nplt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-')\nplt.axvline(model.alpha_, color='.5')\nplt.title('Model selection')\nplt.ylabel('Cross-validation score')\nplt.xlabel('alpha')\n\nplt.show()"
81+
"plt.figure(figsize=(10, 6))\nplt.subplots_adjust(left=0.02, right=0.98)\n\n# plot the covariances\ncovs = [('Empirical', emp_cov), ('Ledoit-Wolf', lw_cov_),\n ('GraphLasso', cov_), ('True', cov)]\nvmax = cov_.max()\nfor i, (name, this_cov) in enumerate(covs):\n plt.subplot(2, 4, i + 1)\n plt.imshow(this_cov, interpolation='nearest', vmin=-vmax, vmax=vmax,\n cmap=plt.cm.RdBu_r)\n plt.xticks(())\n plt.yticks(())\n plt.title('%s covariance' % name)\n\n\n# plot the precisions\nprecs = [('Empirical', linalg.inv(emp_cov)), ('Ledoit-Wolf', lw_prec_),\n ('GraphLasso', prec_), ('True', prec)]\nvmax = .9 * prec_.max()\nfor i, (name, this_prec) in enumerate(precs):\n ax = plt.subplot(2, 4, i + 5)\n plt.imshow(np.ma.masked_equal(this_prec, 0),\n interpolation='nearest', vmin=-vmax, vmax=vmax,\n cmap=plt.cm.RdBu_r)\n plt.xticks(())\n plt.yticks(())\n plt.title('%s precision' % name)\n ax.set_axis_bgcolor('.7')\n\n# plot the model selection metric\nplt.figure(figsize=(4, 3))\nplt.axes([.2, .15, .75, .7])\nplt.plot(model.cv_alphas_, np.mean(model.grid_scores_, axis=1), 'o-')\nplt.axvline(model.alpha_, color='.5')\nplt.title('Model selection')\nplt.ylabel('Cross-validation score')\nplt.xlabel('alpha')\n\nplt.show()"
8282
],
8383
"outputs": [],
8484
"metadata": {

dev/_downloads/plot_sparse_cov.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@
126126
# plot the model selection metric
127127
plt.figure(figsize=(4, 3))
128128
plt.axes([.2, .15, .75, .7])
129-
plt.plot(model.cv_alphas_, np.mean(model.grid_scores, axis=1), 'o-')
129+
plt.plot(model.cv_alphas_, np.mean(model.grid_scores_, axis=1), 'o-')
130130
plt.axvline(model.alpha_, color='.5')
131131
plt.title('Model selection')
132132
plt.ylabel('Cross-validation score')

dev/_downloads/scikit-learn-docs.pdf

-9.58 KB
Binary file not shown.
14 Bytes
14 Bytes
105 Bytes
105 Bytes
-168 Bytes

0 commit comments

Comments
 (0)