Skip to content

Commit a11abdd

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 832513a7fb6570c41f3c8bf4bf7cbaf110da300e
1 parent 8632be6 commit a11abdd

File tree

1,227 files changed

+4447
-4441
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,227 files changed

+4447
-4441
lines changed
Binary file not shown.
Binary file not shown.

dev/_downloads/8452fc8dfe9850cfdaa1b758e5a2748b/plot_gradient_boosting_early_stopping.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"# Authors: Vighnesh Birodkar <[email protected]>\n# Raghav RV <[email protected]>\n# License: BSD 3 clause\n\nimport time\n\nimport numpy as np\nimport matplotlib.pyplot as plt\n\nfrom sklearn import ensemble\nfrom sklearn import datasets\nfrom sklearn.model_selection import train_test_split\n\ndata_list = [datasets.load_iris(), datasets.load_digits()]\ndata_list = [(d.data, d.target) for d in data_list]\ndata_list += [datasets.make_hastie_10_2()]\nnames = [\"Iris Data\", \"Digits Data\", \"Hastie Data\"]\n\nn_gb = []\nscore_gb = []\ntime_gb = []\nn_gbes = []\nscore_gbes = []\ntime_gbes = []\n\nn_estimators = 500\n\nfor X, y in data_list:\n X_train, X_test, y_train, y_test = train_test_split(\n X, y, test_size=0.2, random_state=0\n )\n\n # We specify that if the scores don't improve by at least 0.01 for the last\n # 10 stages, stop fitting additional stages\n gbes = ensemble.GradientBoostingClassifier(\n n_estimators=n_estimators,\n validation_fraction=0.2,\n n_iter_no_change=5,\n tol=0.01,\n random_state=0,\n )\n gb = ensemble.GradientBoostingClassifier(n_estimators=n_estimators, random_state=0)\n start = time.time()\n gb.fit(X_train, y_train)\n time_gb.append(time.time() - start)\n\n start = time.time()\n gbes.fit(X_train, y_train)\n time_gbes.append(time.time() - start)\n\n score_gb.append(gb.score(X_test, y_test))\n score_gbes.append(gbes.score(X_test, y_test))\n\n n_gb.append(gb.n_estimators_)\n n_gbes.append(gbes.n_estimators_)\n\nbar_width = 0.2\nn = len(data_list)\nindex = np.arange(0, n * bar_width, bar_width) * 2.5\nindex = index[0:n]"
29+
"# Authors: Vighnesh Birodkar <[email protected]>\n# Raghav RV <[email protected]>\n# License: BSD 3 clause\n\nimport time\n\nimport numpy as np\nimport matplotlib.pyplot as plt\n\nfrom sklearn import ensemble\nfrom sklearn import datasets\nfrom sklearn.model_selection import train_test_split\n\ndata_list = [\n datasets.load_iris(return_X_y=True),\n datasets.make_classification(n_samples=800, random_state=0),\n datasets.make_hastie_10_2(n_samples=2000, random_state=0),\n]\nnames = [\"Iris Data\", \"Classification Data\", \"Hastie Data\"]\n\nn_gb = []\nscore_gb = []\ntime_gb = []\nn_gbes = []\nscore_gbes = []\ntime_gbes = []\n\nn_estimators = 200\n\nfor X, y in data_list:\n X_train, X_test, y_train, y_test = train_test_split(\n X, y, test_size=0.2, random_state=0\n )\n\n # We specify that if the scores don't improve by at least 0.01 for the last\n # 10 stages, stop fitting additional stages\n gbes = ensemble.GradientBoostingClassifier(\n n_estimators=n_estimators,\n validation_fraction=0.2,\n n_iter_no_change=5,\n tol=0.01,\n random_state=0,\n )\n gb = ensemble.GradientBoostingClassifier(n_estimators=n_estimators, random_state=0)\n start = time.time()\n gb.fit(X_train, y_train)\n time_gb.append(time.time() - start)\n\n start = time.time()\n gbes.fit(X_train, y_train)\n time_gbes.append(time.time() - start)\n\n score_gb.append(gb.score(X_test, y_test))\n score_gbes.append(gbes.score(X_test, y_test))\n\n n_gb.append(gb.n_estimators_)\n n_gbes.append(gbes.n_estimators_)\n\nbar_width = 0.2\nn = len(data_list)\nindex = np.arange(0, n * bar_width, bar_width) * 2.5\nindex = index[0:n]"
3030
]
3131
},
3232
{

dev/_downloads/be911e971b87fe80b6899069dbcfb737/plot_gradient_boosting_early_stopping.py

Lines changed: 7 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -45,10 +45,12 @@
4545
from sklearn import datasets
4646
from sklearn.model_selection import train_test_split
4747

48-
data_list = [datasets.load_iris(), datasets.load_digits()]
49-
data_list = [(d.data, d.target) for d in data_list]
50-
data_list += [datasets.make_hastie_10_2()]
51-
names = ["Iris Data", "Digits Data", "Hastie Data"]
48+
data_list = [
49+
datasets.load_iris(return_X_y=True),
50+
datasets.make_classification(n_samples=800, random_state=0),
51+
datasets.make_hastie_10_2(n_samples=2000, random_state=0),
52+
]
53+
names = ["Iris Data", "Classification Data", "Hastie Data"]
5254

5355
n_gb = []
5456
score_gb = []
@@ -57,7 +59,7 @@
5759
score_gbes = []
5860
time_gbes = []
5961

60-
n_estimators = 500
62+
n_estimators = 200
6163

6264
for X, y in data_list:
6365
X_train, X_test, y_train, y_test = train_test_split(

dev/_downloads/scikit-learn-docs.zip

-14.8 KB
Binary file not shown.
39 Bytes
-166 Bytes
-25 Bytes
24 Bytes
4 Bytes

0 commit comments

Comments
 (0)