Skip to content

Commit aa0842d

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 3d16a21b6c9c6940509d98e5e0c030658f7c348c
1 parent ab48c3e commit aa0842d

File tree

1,364 files changed

+4764
-4764
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,364 files changed

+4764
-4764
lines changed
Binary file not shown.

dev/_downloads/1e0968da80ca868bbdf21c1d0547f68c/plot_lle_digits.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -98,7 +98,7 @@
9898
},
9999
"outputs": [],
100100
"source": [
101-
"from sklearn.decomposition import TruncatedSVD\nfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysis\nfrom sklearn.ensemble import RandomTreesEmbedding\nfrom sklearn.manifold import (\n Isomap,\n LocallyLinearEmbedding,\n MDS,\n SpectralEmbedding,\n TSNE,\n)\nfrom sklearn.neighbors import NeighborhoodComponentsAnalysis\nfrom sklearn.pipeline import make_pipeline\nfrom sklearn.random_projection import SparseRandomProjection\n\nembeddings = {\n \"Random projection embedding\": SparseRandomProjection(\n n_components=2, random_state=42\n ),\n \"Truncated SVD embedding\": TruncatedSVD(n_components=2),\n \"Linear Discriminant Analysis embedding\": LinearDiscriminantAnalysis(\n n_components=2\n ),\n \"Isomap embedding\": Isomap(n_neighbors=n_neighbors, n_components=2),\n \"Standard LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"standard\"\n ),\n \"Modified LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"modified\"\n ),\n \"Hessian LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"hessian\"\n ),\n \"LTSA LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"ltsa\"\n ),\n \"MDS embedding\": MDS(\n n_components=2, n_init=1, max_iter=120, n_jobs=2, normalized_stress=\"auto\"\n ),\n \"Random Trees embedding\": make_pipeline(\n RandomTreesEmbedding(n_estimators=200, max_depth=5, random_state=0),\n TruncatedSVD(n_components=2),\n ),\n \"Spectral embedding\": SpectralEmbedding(\n n_components=2, random_state=0, eigen_solver=\"arpack\"\n ),\n \"t-SNE embeedding\": TSNE(\n n_components=2,\n n_iter=500,\n n_iter_without_progress=150,\n n_jobs=2,\n random_state=0,\n ),\n \"NCA embedding\": NeighborhoodComponentsAnalysis(\n n_components=2, init=\"pca\", random_state=0\n ),\n}"
101+
"from sklearn.decomposition import TruncatedSVD\nfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysis\nfrom sklearn.ensemble import RandomTreesEmbedding\nfrom sklearn.manifold import (\n Isomap,\n LocallyLinearEmbedding,\n MDS,\n SpectralEmbedding,\n TSNE,\n)\nfrom sklearn.neighbors import NeighborhoodComponentsAnalysis\nfrom sklearn.pipeline import make_pipeline\nfrom sklearn.random_projection import SparseRandomProjection\n\nembeddings = {\n \"Random projection embedding\": SparseRandomProjection(\n n_components=2, random_state=42\n ),\n \"Truncated SVD embedding\": TruncatedSVD(n_components=2),\n \"Linear Discriminant Analysis embedding\": LinearDiscriminantAnalysis(\n n_components=2\n ),\n \"Isomap embedding\": Isomap(n_neighbors=n_neighbors, n_components=2),\n \"Standard LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"standard\"\n ),\n \"Modified LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"modified\"\n ),\n \"Hessian LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"hessian\"\n ),\n \"LTSA LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"ltsa\"\n ),\n \"MDS embedding\": MDS(n_components=2, n_init=1, max_iter=120, n_jobs=2),\n \"Random Trees embedding\": make_pipeline(\n RandomTreesEmbedding(n_estimators=200, max_depth=5, random_state=0),\n TruncatedSVD(n_components=2),\n ),\n \"Spectral embedding\": SpectralEmbedding(\n n_components=2, random_state=0, eigen_solver=\"arpack\"\n ),\n \"t-SNE embeedding\": TSNE(\n n_components=2,\n n_iter=500,\n n_iter_without_progress=150,\n n_jobs=2,\n random_state=0,\n ),\n \"NCA embedding\": NeighborhoodComponentsAnalysis(\n n_components=2, init=\"pca\", random_state=0\n ),\n}"
102102
]
103103
},
104104
{

dev/_downloads/3c9b7bcd0b16f172ac12ffad61f3b5f0/plot_stack_predictors.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@
4444
},
4545
"outputs": [],
4646
"source": [
47-
"import numpy as np\n\nfrom sklearn.datasets import fetch_openml\nfrom sklearn.utils import shuffle\n\n\ndef load_ames_housing():\n df = fetch_openml(name=\"house_prices\", as_frame=True, parser=\"pandas\")\n X = df.data\n y = df.target\n\n features = [\n \"YrSold\",\n \"HeatingQC\",\n \"Street\",\n \"YearRemodAdd\",\n \"Heating\",\n \"MasVnrType\",\n \"BsmtUnfSF\",\n \"Foundation\",\n \"MasVnrArea\",\n \"MSSubClass\",\n \"ExterQual\",\n \"Condition2\",\n \"GarageCars\",\n \"GarageType\",\n \"OverallQual\",\n \"TotalBsmtSF\",\n \"BsmtFinSF1\",\n \"HouseStyle\",\n \"MiscFeature\",\n \"MoSold\",\n ]\n\n X = X.loc[:,features]\n X, y = shuffle(X, y, random_state=0)\n\n X = X.iloc[:600]\n y = y.iloc[:600]\n return X, np.log(y)\n\n\nX, y = load_ames_housing()"
47+
"import numpy as np\n\nfrom sklearn.datasets import fetch_openml\nfrom sklearn.utils import shuffle\n\n\ndef load_ames_housing():\n df = fetch_openml(name=\"house_prices\", as_frame=True, parser=\"pandas\")\n X = df.data\n y = df.target\n\n features = [\n \"YrSold\",\n \"HeatingQC\",\n \"Street\",\n \"YearRemodAdd\",\n \"Heating\",\n \"MasVnrType\",\n \"BsmtUnfSF\",\n \"Foundation\",\n \"MasVnrArea\",\n \"MSSubClass\",\n \"ExterQual\",\n \"Condition2\",\n \"GarageCars\",\n \"GarageType\",\n \"OverallQual\",\n \"TotalBsmtSF\",\n \"BsmtFinSF1\",\n \"HouseStyle\",\n \"MiscFeature\",\n \"MoSold\",\n ]\n\n X = X[features]\n X, y = shuffle(X, y, random_state=0)\n\n X = X[:600]\n y = y[:600]\n return X, np.log(y)\n\n\nX, y = load_ames_housing()"
4848
]
4949
},
5050
{

0 commit comments

Comments
 (0)