Skip to content

Commit baba600

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 378cddd08281efd2a70e960dca7a95ab3b3e9771
1 parent 7863e42 commit baba600

File tree

1,215 files changed

+4206
-4189
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,215 files changed

+4206
-4189
lines changed
Binary file not shown.
Binary file not shown.

dev/_downloads/98345ee267d0372eda8faf906905730e/plot_missing_values.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -304,6 +304,7 @@ def get_impute_iterative(X_missing, y_missing):
304304

305305
plt.show()
306306

307+
# %%
307308
# You can also try different techniques. For instance, the median is a more
308309
# robust estimator for data with high magnitude variables which could dominate
309310
# results (otherwise known as a 'long tail').

dev/_downloads/a440a8b10138c855100ed5820fdb36b6/plot_missing_values.ipynb

Lines changed: 8 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -188,7 +188,14 @@
188188
},
189189
"outputs": [],
190190
"source": [
191-
"import matplotlib.pyplot as plt\n\n\nn_bars = len(mses_diabetes)\nxval = np.arange(n_bars)\n\ncolors = [\"r\", \"g\", \"b\", \"orange\", \"black\"]\n\n# plot diabetes results\nplt.figure(figsize=(12, 6))\nax1 = plt.subplot(121)\nfor j in xval:\n ax1.barh(\n j,\n mses_diabetes[j],\n xerr=stds_diabetes[j],\n color=colors[j],\n alpha=0.6,\n align=\"center\",\n )\n\nax1.set_title(\"Imputation Techniques with Diabetes Data\")\nax1.set_xlim(left=np.min(mses_diabetes) * 0.9, right=np.max(mses_diabetes) * 1.1)\nax1.set_yticks(xval)\nax1.set_xlabel(\"MSE\")\nax1.invert_yaxis()\nax1.set_yticklabels(x_labels)\n\n# plot california dataset results\nax2 = plt.subplot(122)\nfor j in xval:\n ax2.barh(\n j,\n mses_california[j],\n xerr=stds_california[j],\n color=colors[j],\n alpha=0.6,\n align=\"center\",\n )\n\nax2.set_title(\"Imputation Techniques with California Data\")\nax2.set_yticks(xval)\nax2.set_xlabel(\"MSE\")\nax2.invert_yaxis()\nax2.set_yticklabels([\"\"] * n_bars)\n\nplt.show()\n\n# You can also try different techniques. For instance, the median is a more\n# robust estimator for data with high magnitude variables which could dominate\n# results (otherwise known as a 'long tail')."
191+
"import matplotlib.pyplot as plt\n\n\nn_bars = len(mses_diabetes)\nxval = np.arange(n_bars)\n\ncolors = [\"r\", \"g\", \"b\", \"orange\", \"black\"]\n\n# plot diabetes results\nplt.figure(figsize=(12, 6))\nax1 = plt.subplot(121)\nfor j in xval:\n ax1.barh(\n j,\n mses_diabetes[j],\n xerr=stds_diabetes[j],\n color=colors[j],\n alpha=0.6,\n align=\"center\",\n )\n\nax1.set_title(\"Imputation Techniques with Diabetes Data\")\nax1.set_xlim(left=np.min(mses_diabetes) * 0.9, right=np.max(mses_diabetes) * 1.1)\nax1.set_yticks(xval)\nax1.set_xlabel(\"MSE\")\nax1.invert_yaxis()\nax1.set_yticklabels(x_labels)\n\n# plot california dataset results\nax2 = plt.subplot(122)\nfor j in xval:\n ax2.barh(\n j,\n mses_california[j],\n xerr=stds_california[j],\n color=colors[j],\n alpha=0.6,\n align=\"center\",\n )\n\nax2.set_title(\"Imputation Techniques with California Data\")\nax2.set_yticks(xval)\nax2.set_xlabel(\"MSE\")\nax2.invert_yaxis()\nax2.set_yticklabels([\"\"] * n_bars)\n\nplt.show()"
192+
]
193+
},
194+
{
195+
"cell_type": "markdown",
196+
"metadata": {},
197+
"source": [
198+
"You can also try different techniques. For instance, the median is a more\nrobust estimator for data with high magnitude variables which could dominate\nresults (otherwise known as a 'long tail').\n\n"
192199
]
193200
}
194201
],

dev/_downloads/scikit-learn-docs.zip

1.71 KB
Binary file not shown.
-106 Bytes
204 Bytes
155 Bytes
520 Bytes
-45 Bytes

0 commit comments

Comments
 (0)