Skip to content

Commit bddf8c2

Browse files
committed
Rebuild dev docs at master=1b9e791
1 parent 04d5060 commit bddf8c2

File tree

231 files changed

+1313
-1313
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

231 files changed

+1313
-1313
lines changed

dev/_sources/modules/linear_model.txt

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -180,7 +180,7 @@ the parameter vector.
180180
The implementation in the class :class:`Lasso` uses coordinate descent as
181181
the algorithm to fit the coefficients. See :ref:`least_angle_regression`
182182
for another implementation::
183-
183+
184184
>>> from sklearn import linear_model
185185
>>> clf = linear_model.Lasso(alpha = 0.1)
186186
>>> clf.fit([[0, 0], [1, 1]], [0, 1])
@@ -1079,9 +1079,9 @@ of a given degree. It can be used as follows::
10791079
[4, 5]])
10801080
>>> poly = PolynomialFeatures(degree=2)
10811081
>>> poly.fit_transform(X)
1082-
array([[ 1, 0, 1, 0, 0, 1],
1083-
[ 1, 2, 3, 4, 6, 9],
1084-
[ 1, 4, 5, 16, 20, 25]])
1082+
array([[ 1., 0., 1., 0., 0., 1.],
1083+
[ 1., 2., 3., 4., 6., 9.],
1084+
[ 1., 4., 5., 16., 20., 25.]])
10851085

10861086
The features of ``X`` have been transformed from :math:`[x_1, x_2]` to
10871087
:math:`[1, x_1, x_2, x_1^2, x_1 x_2, x_2^2]`, and can now be used within
@@ -1125,10 +1125,10 @@ This way, we can solve the XOR problem with a linear classifier::
11251125
>>> y = X[:, 0] ^ X[:, 1]
11261126
>>> X = PolynomialFeatures(interaction_only=True).fit_transform(X)
11271127
>>> X
1128-
array([[1, 0, 0, 0],
1129-
[1, 0, 1, 0],
1130-
[1, 1, 0, 0],
1131-
[1, 1, 1, 1]])
1128+
array([[ 1., 0., 0., 0.],
1129+
[ 1., 0., 1., 0.],
1130+
[ 1., 1., 0., 0.],
1131+
[ 1., 1., 1., 1.]])
11321132
>>> clf = Perceptron(fit_intercept=False, n_iter=10, shuffle=False).fit(X, y)
11331133
>>> clf.score(X, y)
11341134
1.0

dev/_sources/modules/preprocessing.txt

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -484,9 +484,9 @@ Often it's useful to add complexity to the model by considering nonlinear featur
484484
[4, 5]])
485485
>>> poly = PolynomialFeatures(2)
486486
>>> poly.fit_transform(X) # doctest: +ELLIPSIS
487-
array([[ 1, 0, 1, 0, 0, 1],
488-
[ 1, 2, 3, 4, 6, 9],
489-
[ 1, 4, 5, 16, 20, 25]])
487+
array([[ 1., 0., 1., 0., 0., 1.],
488+
[ 1., 2., 3., 4., 6., 9.],
489+
[ 1., 4., 5., 16., 20., 25.]])
490490

491491
The features of X have been transformed from :math:`(X_1, X_2)` to :math:`(1, X_1, X_2, X_1^2, X_1X_2, X_2^2)`.
492492

@@ -499,9 +499,9 @@ In some cases, only interaction terms among features are required, and it can be
499499
[6, 7, 8]])
500500
>>> poly = PolynomialFeatures(degree=3, interaction_only=True)
501501
>>> poly.fit_transform(X) # doctest: +ELLIPSIS
502-
array([[ 1, 0, 1, 2, 0, 0, 2, 0],
503-
[ 1, 3, 4, 5, 12, 15, 20, 60],
504-
[ 1, 6, 7, 8, 42, 48, 56, 336]])
502+
array([[ 1., 0., 1., 2., 0., 0., 2., 0.],
503+
[ 1., 3., 4., 5., 12., 15., 20., 60.],
504+
[ 1., 6., 7., 8., 42., 48., 56., 336.]])
505505

506506
The features of X have been transformed from :math:`(X_1, X_2, X_3)` to :math:`(1, X_1, X_2, X_3, X_1X_2, X_1X_3, X_2X_3, X_1X_2X_3)`.
507507

dev/modules/generated/sklearn.base.BaseEstimator.html

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@
172172
<h1><a class="reference internal" href="../classes.html#module-sklearn.base" title="sklearn.base"><code class="xref py py-mod docutils literal"><span class="pre">sklearn.base</span></code></a>.BaseEstimator<a class="headerlink" href="#sklearn-base-baseestimator" title="Permalink to this headline"></a></h1>
173173
<dl class="class">
174174
<dt id="sklearn.base.BaseEstimator">
175-
<em class="property">class </em><code class="descclassname">sklearn.base.</code><code class="descname">BaseEstimator</code><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/base.py#L162"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.BaseEstimator" title="Permalink to this definition"></a></dt>
175+
<em class="property">class </em><code class="descclassname">sklearn.base.</code><code class="descname">BaseEstimator</code><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/base.py#L162"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.BaseEstimator" title="Permalink to this definition"></a></dt>
176176
<dd><p>Base class for all estimators in scikit-learn</p>
177177
<p class="rubric">Notes</p>
178178
<p>All estimators should specify all the parameters that can be set
@@ -201,7 +201,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.base" tit
201201

202202
<dl class="method">
203203
<dt id="sklearn.base.BaseEstimator.get_params">
204-
<code class="descname">get_params</code><span class="sig-paren">(</span><em>deep=True</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/base.py#L199"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.BaseEstimator.get_params" title="Permalink to this definition"></a></dt>
204+
<code class="descname">get_params</code><span class="sig-paren">(</span><em>deep=True</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/base.py#L199"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.BaseEstimator.get_params" title="Permalink to this definition"></a></dt>
205205
<dd><p>Get parameters for this estimator.</p>
206206
<table class="docutils field-list" frame="void" rules="none">
207207
<col class="field-name" />
@@ -226,7 +226,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.base" tit
226226

227227
<dl class="method">
228228
<dt id="sklearn.base.BaseEstimator.set_params">
229-
<code class="descname">set_params</code><span class="sig-paren">(</span><em>**params</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/base.py#L236"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.BaseEstimator.set_params" title="Permalink to this definition"></a></dt>
229+
<code class="descname">set_params</code><span class="sig-paren">(</span><em>**params</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/base.py#L236"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.BaseEstimator.set_params" title="Permalink to this definition"></a></dt>
230230
<dd><p>Set the parameters of this estimator.</p>
231231
<p>The method works on simple estimators as well as on nested objects
232232
(such as pipelines). The former have parameters of the form

dev/modules/generated/sklearn.base.TransformerMixin.html

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@
172172
<h1><a class="reference internal" href="../classes.html#module-sklearn.base" title="sklearn.base"><code class="xref py py-mod docutils literal"><span class="pre">sklearn.base</span></code></a>.TransformerMixin<a class="headerlink" href="#sklearn-base-transformermixin" title="Permalink to this headline"></a></h1>
173173
<dl class="class">
174174
<dt id="sklearn.base.TransformerMixin">
175-
<em class="property">class </em><code class="descclassname">sklearn.base.</code><code class="descname">TransformerMixin</code><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/base.py#L428"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.TransformerMixin" title="Permalink to this definition"></a></dt>
175+
<em class="property">class </em><code class="descclassname">sklearn.base.</code><code class="descname">TransformerMixin</code><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/base.py#L428"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.TransformerMixin" title="Permalink to this definition"></a></dt>
176176
<dd><p>Mixin class for all transformers in scikit-learn.</p>
177177
<p class="rubric">Methods</p>
178178
<table border="1" class="longtable docutils">
@@ -194,7 +194,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.base" tit
194194

195195
<dl class="method">
196196
<dt id="sklearn.base.TransformerMixin.fit_transform">
197-
<code class="descname">fit_transform</code><span class="sig-paren">(</span><em>X</em>, <em>y=None</em>, <em>**fit_params</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/base.py#L431"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.TransformerMixin.fit_transform" title="Permalink to this definition"></a></dt>
197+
<code class="descname">fit_transform</code><span class="sig-paren">(</span><em>X</em>, <em>y=None</em>, <em>**fit_params</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/base.py#L431"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.base.TransformerMixin.fit_transform" title="Permalink to this definition"></a></dt>
198198
<dd><p>Fit to data, then transform it.</p>
199199
<p>Fits transformer to X and y with optional parameters fit_params
200200
and returns a transformed version of X.</p>

dev/modules/generated/sklearn.calibration.CalibratedClassifierCV.html

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -172,7 +172,7 @@
172172
<h1><a class="reference internal" href="../classes.html#module-sklearn.calibration" title="sklearn.calibration"><code class="xref py py-mod docutils literal"><span class="pre">sklearn.calibration</span></code></a>.CalibratedClassifierCV<a class="headerlink" href="#sklearn-calibration-calibratedclassifiercv" title="Permalink to this headline"></a></h1>
173173
<dl class="class">
174174
<dt id="sklearn.calibration.CalibratedClassifierCV">
175-
<em class="property">class </em><code class="descclassname">sklearn.calibration.</code><code class="descname">CalibratedClassifierCV</code><span class="sig-paren">(</span><em>base_estimator=None</em>, <em>method='sigmoid'</em>, <em>cv=3</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/calibration.py#L29"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV" title="Permalink to this definition"></a></dt>
175+
<em class="property">class </em><code class="descclassname">sklearn.calibration.</code><code class="descname">CalibratedClassifierCV</code><span class="sig-paren">(</span><em>base_estimator=None</em>, <em>method='sigmoid'</em>, <em>cv=3</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/calibration.py#L29"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV" title="Permalink to this definition"></a></dt>
176176
<dd><p>Probability calibration with isotonic regression or sigmoid.</p>
177177
<p>With this class, the base_estimator is fit on the train set of the
178178
cross-validation generator and the test set is used for calibration.
@@ -285,12 +285,12 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.calibrati
285285
</table>
286286
<dl class="method">
287287
<dt id="sklearn.calibration.CalibratedClassifierCV.__init__">
288-
<code class="descname">__init__</code><span class="sig-paren">(</span><em>base_estimator=None</em>, <em>method='sigmoid'</em>, <em>cv=3</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/calibration.py#L98"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.__init__" title="Permalink to this definition"></a></dt>
288+
<code class="descname">__init__</code><span class="sig-paren">(</span><em>base_estimator=None</em>, <em>method='sigmoid'</em>, <em>cv=3</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/calibration.py#L98"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.__init__" title="Permalink to this definition"></a></dt>
289289
<dd></dd></dl>
290290

291291
<dl class="method">
292292
<dt id="sklearn.calibration.CalibratedClassifierCV.fit">
293-
<code class="descname">fit</code><span class="sig-paren">(</span><em>X</em>, <em>y</em>, <em>sample_weight=None</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/calibration.py#L103"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.fit" title="Permalink to this definition"></a></dt>
293+
<code class="descname">fit</code><span class="sig-paren">(</span><em>X</em>, <em>y</em>, <em>sample_weight=None</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/calibration.py#L103"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.fit" title="Permalink to this definition"></a></dt>
294294
<dd><p>Fit the calibrated model</p>
295295
<table class="docutils field-list" frame="void" rules="none">
296296
<col class="field-name" />
@@ -322,7 +322,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.calibrati
322322

323323
<dl class="method">
324324
<dt id="sklearn.calibration.CalibratedClassifierCV.get_params">
325-
<code class="descname">get_params</code><span class="sig-paren">(</span><em>deep=True</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/base.py#L199"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.get_params" title="Permalink to this definition"></a></dt>
325+
<code class="descname">get_params</code><span class="sig-paren">(</span><em>deep=True</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/base.py#L199"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.get_params" title="Permalink to this definition"></a></dt>
326326
<dd><p>Get parameters for this estimator.</p>
327327
<table class="docutils field-list" frame="void" rules="none">
328328
<col class="field-name" />
@@ -347,7 +347,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.calibrati
347347

348348
<dl class="method">
349349
<dt id="sklearn.calibration.CalibratedClassifierCV.predict">
350-
<code class="descname">predict</code><span class="sig-paren">(</span><em>X</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/calibration.py#L216"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.predict" title="Permalink to this definition"></a></dt>
350+
<code class="descname">predict</code><span class="sig-paren">(</span><em>X</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/calibration.py#L216"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.predict" title="Permalink to this definition"></a></dt>
351351
<dd><p>Predict the target of new samples. Can be different from the
352352
prediction of the uncalibrated classifier.</p>
353353
<table class="docutils field-list" frame="void" rules="none">
@@ -372,7 +372,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.calibrati
372372

373373
<dl class="method">
374374
<dt id="sklearn.calibration.CalibratedClassifierCV.predict_proba">
375-
<code class="descname">predict_proba</code><span class="sig-paren">(</span><em>X</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/calibration.py#L186"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.predict_proba" title="Permalink to this definition"></a></dt>
375+
<code class="descname">predict_proba</code><span class="sig-paren">(</span><em>X</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/calibration.py#L186"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.predict_proba" title="Permalink to this definition"></a></dt>
376376
<dd><p>Posterior probabilities of classification</p>
377377
<p>This function returns posterior probabilities of classification
378378
according to each class on an array of test vectors X.</p>
@@ -398,7 +398,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.calibrati
398398

399399
<dl class="method">
400400
<dt id="sklearn.calibration.CalibratedClassifierCV.score">
401-
<code class="descname">score</code><span class="sig-paren">(</span><em>X</em>, <em>y</em>, <em>sample_weight=None</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/base.py#L285"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.score" title="Permalink to this definition"></a></dt>
401+
<code class="descname">score</code><span class="sig-paren">(</span><em>X</em>, <em>y</em>, <em>sample_weight=None</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/base.py#L285"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.score" title="Permalink to this definition"></a></dt>
402402
<dd><p>Returns the mean accuracy on the given test data and labels.</p>
403403
<p>In multi-label classification, this is the subset accuracy
404404
which is a harsh metric since you require for each sample that
@@ -433,7 +433,7 @@ <h1><a class="reference internal" href="../classes.html#module-sklearn.calibrati
433433

434434
<dl class="method">
435435
<dt id="sklearn.calibration.CalibratedClassifierCV.set_params">
436-
<code class="descname">set_params</code><span class="sig-paren">(</span><em>**params</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/d52e2a1/sklearn/base.py#L236"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.set_params" title="Permalink to this definition"></a></dt>
436+
<code class="descname">set_params</code><span class="sig-paren">(</span><em>**params</em><span class="sig-paren">)</span><a class="reference external" href="https://github.com/scikit-learn/scikit-learn/blob/1b9e791/sklearn/base.py#L236"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#sklearn.calibration.CalibratedClassifierCV.set_params" title="Permalink to this definition"></a></dt>
437437
<dd><p>Set the parameters of this estimator.</p>
438438
<p>The method works on simple estimators as well as on nested objects
439439
(such as pipelines). The former have parameters of the form

0 commit comments

Comments
 (0)