Skip to content

Commit cb162ab

Browse files
committed
Pushing the docs to dev/ for branch: main, commit 7bfa9ccd7c4a6d73bb2b0a99baf6f9515e681951
1 parent 2276b00 commit cb162ab

File tree

1,226 files changed

+4220
-4214
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,226 files changed

+4220
-4214
lines changed
Binary file not shown.
Binary file not shown.

dev/_downloads/733ff7845fe2f197ecd0c72afcf23651/plot_randomized_search.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"import numpy as np\n\nfrom time import time\nimport scipy.stats as stats\nfrom sklearn.utils.fixes import loguniform\n\nfrom sklearn.model_selection import GridSearchCV, RandomizedSearchCV\nfrom sklearn.datasets import load_digits\nfrom sklearn.linear_model import SGDClassifier\n\n# get some data\nX, y = load_digits(return_X_y=True)\n\n# build a classifier\nclf = SGDClassifier(loss=\"hinge\", penalty=\"elasticnet\", fit_intercept=True)\n\n\n# Utility function to report best scores\ndef report(results, n_top=3):\n for i in range(1, n_top + 1):\n candidates = np.flatnonzero(results[\"rank_test_score\"] == i)\n for candidate in candidates:\n print(\"Model with rank: {0}\".format(i))\n print(\n \"Mean validation score: {0:.3f} (std: {1:.3f})\".format(\n results[\"mean_test_score\"][candidate],\n results[\"std_test_score\"][candidate],\n )\n )\n print(\"Parameters: {0}\".format(results[\"params\"][candidate]))\n print(\"\")\n\n\n# specify parameters and distributions to sample from\nparam_dist = {\n \"average\": [True, False],\n \"l1_ratio\": stats.uniform(0, 1),\n \"alpha\": loguniform(1e-4, 1e0),\n}\n\n# run randomized search\nn_iter_search = 20\nrandom_search = RandomizedSearchCV(\n clf, param_distributions=param_dist, n_iter=n_iter_search\n)\n\nstart = time()\nrandom_search.fit(X, y)\nprint(\n \"RandomizedSearchCV took %.2f seconds for %d candidates parameter settings.\"\n % ((time() - start), n_iter_search)\n)\nreport(random_search.cv_results_)\n\n# use a full grid over all parameters\nparam_grid = {\n \"average\": [True, False],\n \"l1_ratio\": np.linspace(0, 1, num=10),\n \"alpha\": np.power(10, np.arange(-4, 1, dtype=float)),\n}\n\n# run grid search\ngrid_search = GridSearchCV(clf, param_grid=param_grid)\nstart = time()\ngrid_search.fit(X, y)\n\nprint(\n \"GridSearchCV took %.2f seconds for %d candidate parameter settings.\"\n % (time() - start, len(grid_search.cv_results_[\"params\"]))\n)\nreport(grid_search.cv_results_)"
29+
"import numpy as np\n\nfrom time import time\nimport scipy.stats as stats\nfrom sklearn.utils.fixes import loguniform\n\nfrom sklearn.model_selection import GridSearchCV, RandomizedSearchCV\nfrom sklearn.datasets import load_digits\nfrom sklearn.linear_model import SGDClassifier\n\n# get some data\nX, y = load_digits(return_X_y=True, n_class=3)\n\n# build a classifier\nclf = SGDClassifier(loss=\"hinge\", penalty=\"elasticnet\", fit_intercept=True)\n\n\n# Utility function to report best scores\ndef report(results, n_top=3):\n for i in range(1, n_top + 1):\n candidates = np.flatnonzero(results[\"rank_test_score\"] == i)\n for candidate in candidates:\n print(\"Model with rank: {0}\".format(i))\n print(\n \"Mean validation score: {0:.3f} (std: {1:.3f})\".format(\n results[\"mean_test_score\"][candidate],\n results[\"std_test_score\"][candidate],\n )\n )\n print(\"Parameters: {0}\".format(results[\"params\"][candidate]))\n print(\"\")\n\n\n# specify parameters and distributions to sample from\nparam_dist = {\n \"average\": [True, False],\n \"l1_ratio\": stats.uniform(0, 1),\n \"alpha\": loguniform(1e-2, 1e0),\n}\n\n# run randomized search\nn_iter_search = 15\nrandom_search = RandomizedSearchCV(\n clf, param_distributions=param_dist, n_iter=n_iter_search\n)\n\nstart = time()\nrandom_search.fit(X, y)\nprint(\n \"RandomizedSearchCV took %.2f seconds for %d candidates parameter settings.\"\n % ((time() - start), n_iter_search)\n)\nreport(random_search.cv_results_)\n\n# use a full grid over all parameters\nparam_grid = {\n \"average\": [True, False],\n \"l1_ratio\": np.linspace(0, 1, num=10),\n \"alpha\": np.power(10, np.arange(-2, 1, dtype=float)),\n}\n\n# run grid search\ngrid_search = GridSearchCV(clf, param_grid=param_grid)\nstart = time()\ngrid_search.fit(X, y)\n\nprint(\n \"GridSearchCV took %.2f seconds for %d candidate parameter settings.\"\n % (time() - start, len(grid_search.cv_results_[\"params\"]))\n)\nreport(grid_search.cv_results_)"
3030
]
3131
}
3232
],

0 commit comments

Comments
 (0)