Skip to content

Commit f3be6d9

Browse files
committed
Pushing the docs to dev/ for branch: main, commit f57a5f9bc0d37a33dba94b0934a00d69c9c4c60d
1 parent 846aeda commit f3be6d9

File tree

1,242 files changed

+4415
-4394
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,242 files changed

+4415
-4394
lines changed
Binary file not shown.

dev/_downloads/1e0968da80ca868bbdf21c1d0547f68c/plot_lle_digits.ipynb

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@
8080
},
8181
"outputs": [],
8282
"source": [
83-
"import numpy as np\nfrom matplotlib import offsetbox\nfrom sklearn.preprocessing import MinMaxScaler\n\n\ndef plot_embedding(X, title, ax):\n X = MinMaxScaler().fit_transform(X)\n\n shown_images = np.array([[1.0, 1.0]]) # just something big\n for i in range(X.shape[0]):\n # plot every digit on the embedding\n ax.text(\n X[i, 0],\n X[i, 1],\n str(y[i]),\n color=plt.cm.Dark2(y[i]),\n fontdict={\"weight\": \"bold\", \"size\": 9},\n )\n\n # show an annotation box for a group of digits\n dist = np.sum((X[i] - shown_images) ** 2, 1)\n if np.min(dist) < 4e-3:\n # don't show points that are too close\n continue\n shown_images = np.concatenate([shown_images, [X[i]]], axis=0)\n imagebox = offsetbox.AnnotationBbox(\n offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]\n )\n ax.add_artist(imagebox)\n\n ax.set_title(title)\n ax.axis(\"off\")"
83+
"import numpy as np\nfrom matplotlib import offsetbox\nfrom sklearn.preprocessing import MinMaxScaler\n\n\ndef plot_embedding(X, title, ax):\n X = MinMaxScaler().fit_transform(X)\n for digit in digits.target_names:\n ax.scatter(\n *X[y == digit].T,\n marker=f\"${digit}$\",\n s=60,\n color=plt.cm.Dark2(digit),\n alpha=0.425,\n zorder=2,\n )\n shown_images = np.array([[1.0, 1.0]]) # just something big\n for i in range(X.shape[0]):\n # plot every digit on the embedding\n # show an annotation box for a group of digits\n dist = np.sum((X[i] - shown_images) ** 2, 1)\n if np.min(dist) < 4e-3:\n # don't show points that are too close\n continue\n shown_images = np.concatenate([shown_images, [X[i]]], axis=0)\n imagebox = offsetbox.AnnotationBbox(\n offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r), X[i]\n )\n imagebox.set(zorder=1)\n ax.add_artist(imagebox)\n\n ax.set_title(title)\n ax.axis(\"off\")"
8484
]
8585
},
8686
{
@@ -98,7 +98,7 @@
9898
},
9999
"outputs": [],
100100
"source": [
101-
"from sklearn.decomposition import TruncatedSVD\nfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysis\nfrom sklearn.ensemble import RandomTreesEmbedding\nfrom sklearn.manifold import (\n Isomap,\n LocallyLinearEmbedding,\n MDS,\n SpectralEmbedding,\n TSNE,\n)\nfrom sklearn.neighbors import NeighborhoodComponentsAnalysis\nfrom sklearn.pipeline import make_pipeline\nfrom sklearn.random_projection import SparseRandomProjection\n\nembeddings = {\n \"Random projection embedding\": SparseRandomProjection(\n n_components=2, random_state=42\n ),\n \"Truncated SVD embedding\": TruncatedSVD(n_components=2),\n \"Linear Discriminant Analysis embedding\": LinearDiscriminantAnalysis(\n n_components=2\n ),\n \"Isomap embedding\": Isomap(n_neighbors=n_neighbors, n_components=2),\n \"Standard LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"standard\"\n ),\n \"Modified LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"modified\"\n ),\n \"Hessian LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"hessian\"\n ),\n \"LTSA LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"ltsa\"\n ),\n \"MDS embedding\": MDS(n_components=2, n_init=1, max_iter=100),\n \"Random Trees embedding\": make_pipeline(\n RandomTreesEmbedding(n_estimators=200, max_depth=5, random_state=0),\n TruncatedSVD(n_components=2),\n ),\n \"Spectral embedding\": SpectralEmbedding(\n n_components=2, random_state=0, eigen_solver=\"arpack\"\n ),\n \"t-SNE embeedding\": TSNE(\n n_components=2, init=\"pca\", learning_rate=\"auto\", random_state=0\n ),\n \"NCA embedding\": NeighborhoodComponentsAnalysis(\n n_components=2, init=\"random\", random_state=0\n ),\n}"
101+
"from sklearn.decomposition import TruncatedSVD\nfrom sklearn.discriminant_analysis import LinearDiscriminantAnalysis\nfrom sklearn.ensemble import RandomTreesEmbedding\nfrom sklearn.manifold import (\n Isomap,\n LocallyLinearEmbedding,\n MDS,\n SpectralEmbedding,\n TSNE,\n)\nfrom sklearn.neighbors import NeighborhoodComponentsAnalysis\nfrom sklearn.pipeline import make_pipeline\nfrom sklearn.random_projection import SparseRandomProjection\n\nembeddings = {\n \"Random projection embedding\": SparseRandomProjection(\n n_components=2, random_state=42\n ),\n \"Truncated SVD embedding\": TruncatedSVD(n_components=2),\n \"Linear Discriminant Analysis embedding\": LinearDiscriminantAnalysis(\n n_components=2\n ),\n \"Isomap embedding\": Isomap(n_neighbors=n_neighbors, n_components=2),\n \"Standard LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"standard\"\n ),\n \"Modified LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"modified\"\n ),\n \"Hessian LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"hessian\"\n ),\n \"LTSA LLE embedding\": LocallyLinearEmbedding(\n n_neighbors=n_neighbors, n_components=2, method=\"ltsa\"\n ),\n \"MDS embedding\": MDS(n_components=2, n_init=1, max_iter=120, n_jobs=2),\n \"Random Trees embedding\": make_pipeline(\n RandomTreesEmbedding(n_estimators=200, max_depth=5, random_state=0),\n TruncatedSVD(n_components=2),\n ),\n \"Spectral embedding\": SpectralEmbedding(\n n_components=2, random_state=0, eigen_solver=\"arpack\"\n ),\n \"t-SNE embeedding\": TSNE(\n n_components=2,\n init=\"pca\",\n learning_rate=\"auto\",\n n_iter=500,\n n_iter_without_progress=150,\n n_jobs=2,\n random_state=0,\n ),\n \"NCA embedding\": NeighborhoodComponentsAnalysis(\n n_components=2, init=\"pca\", random_state=0\n ),\n}"
102102
]
103103
},
104104
{

0 commit comments

Comments
 (0)