Skip to content

Commit d0d985f

Browse files
committed
Pushing the docs to dev/ for branch: master, commit ad6fc804252a8d3454c8d8a3908fa9a73a8382ae
1 parent 75a2cfa commit d0d985f

File tree

1,187 files changed

+3695
-3690
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,187 files changed

+3695
-3690
lines changed
Binary file not shown.

dev/_downloads/95048801088377025c1575a6a6bf598c/plot_learning_curve.ipynb

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@
2626
},
2727
"outputs": [],
2828
"source": [
29-
"print(__doc__)\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.naive_bayes import GaussianNB\nfrom sklearn.svm import SVC\nfrom sklearn.datasets import load_digits\nfrom sklearn.model_selection import learning_curve\nfrom sklearn.model_selection import ShuffleSplit\n\n\ndef plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None,\n n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):\n \"\"\"\n Generate 3 plots: the test and training learning curve, the training\n samples vs fit times curve, the fit times vs score curve.\n\n Parameters\n ----------\n estimator : object type that implements the \"fit\" and \"predict\" methods\n An object of that type which is cloned for each validation.\n\n title : string\n Title for the chart.\n\n X : array-like, shape (n_samples, n_features)\n Training vector, where n_samples is the number of samples and\n n_features is the number of features.\n\n y : array-like, shape (n_samples) or (n_samples, n_features), optional\n Target relative to X for classification or regression;\n None for unsupervised learning.\n\n axes : array of 3 axes, optional (default=None)\n Axes to use for plotting the curves.\n\n ylim : tuple, shape (ymin, ymax), optional\n Defines minimum and maximum yvalues plotted.\n\n cv : int, cross-validation generator or an iterable, optional\n Determines the cross-validation splitting strategy.\n Possible inputs for cv are:\n - None, to use the default 5-fold cross-validation,\n - integer, to specify the number of folds.\n - :term:`CV splitter`,\n - An iterable yielding (train, test) splits as arrays of indices.\n\n For integer/None inputs, if ``y`` is binary or multiclass,\n :class:`StratifiedKFold` used. If the estimator is not a classifier\n or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.\n\n Refer :ref:`User Guide <cross_validation>` for the various\n cross-validators that can be used here.\n\n n_jobs : int or None, optional (default=None)\n Number of jobs to run in parallel.\n ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.\n ``-1`` means using all processors. See :term:`Glossary <n_jobs>`\n for more details.\n\n train_sizes : array-like, shape (n_ticks,), dtype float or int\n Relative or absolute numbers of training examples that will be used to\n generate the learning curve. If the dtype is float, it is regarded as a\n fraction of the maximum size of the training set (that is determined\n by the selected validation method), i.e. it has to be within (0, 1].\n Otherwise it is interpreted as absolute sizes of the training sets.\n Note that for classification the number of samples usually have to\n be big enough to contain at least one sample from each class.\n (default: np.linspace(0.1, 1.0, 5))\n \"\"\"\n if axes is None:\n _, axes = plt.subplots(1, 3, figsize=(20, 5))\n\n axes[0].set_title(title)\n if ylim is not None:\n axes[0].set_ylim(*ylim)\n axes[0].set_xlabel(\"Training examples\")\n axes[0].set_ylabel(\"Score\")\n\n train_sizes, train_scores, test_scores, fit_times, _ = \\\n learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs,\n train_sizes=train_sizes,\n return_times=True)\n train_scores_mean = np.mean(train_scores, axis=1)\n train_scores_std = np.std(train_scores, axis=1)\n test_scores_mean = np.mean(test_scores, axis=1)\n test_scores_std = np.std(test_scores, axis=1)\n fit_times_mean = np.mean(fit_times, axis=1)\n fit_times_std = np.std(fit_times, axis=1)\n\n # Plot learning curve\n axes[0].grid()\n axes[0].fill_between(train_sizes, train_scores_mean - train_scores_std,\n train_scores_mean + train_scores_std, alpha=0.1,\n color=\"r\")\n axes[0].fill_between(train_sizes, test_scores_mean - test_scores_std,\n test_scores_mean + test_scores_std, alpha=0.1,\n color=\"g\")\n axes[0].plot(train_sizes, train_scores_mean, 'o-', color=\"r\",\n label=\"Training score\")\n axes[0].plot(train_sizes, test_scores_mean, 'o-', color=\"g\",\n label=\"Cross-validation score\")\n axes[0].legend(loc=\"best\")\n\n # Plot n_samples vs fit_times\n axes[1].grid()\n axes[1].plot(train_sizes, fit_times_mean, 'o-')\n axes[1].fill_between(train_sizes, fit_times_mean - fit_times_std,\n fit_times_mean + fit_times_std, alpha=0.1)\n axes[1].set_xlabel(\"Training examples\")\n axes[1].set_ylabel(\"fit_times\")\n axes[1].set_title(\"Scalability of the model\")\n\n # Plot fit_time vs score\n axes[2].grid()\n axes[2].plot(fit_times_mean, test_scores_mean, 'o-')\n axes[2].fill_between(fit_times_mean, test_scores_mean - test_scores_std,\n test_scores_mean + test_scores_std, alpha=0.1)\n axes[2].set_xlabel(\"fit_times\")\n axes[2].set_ylabel(\"Score\")\n axes[2].set_title(\"Performance of the model\")\n\n return plt\n\n\nfig, axes = plt.subplots(3, 2, figsize=(10, 15))\n\nX, y = load_digits(return_X_y=True)\n\ntitle = \"Learning Curves (Naive Bayes)\"\n# Cross validation with 100 iterations to get smoother mean test and train\n# score curves, each time with 20% data randomly selected as a validation set.\ncv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)\n\nestimator = GaussianNB()\nplot_learning_curve(estimator, title, X, y, axes=axes[:, 0], ylim=(0.7, 1.01),\n cv=cv, n_jobs=4)\n\ntitle = r\"Learning Curves (SVM, RBF kernel, $\\gamma=0.001$)\"\n# SVC is more expensive so we do a lower number of CV iterations:\ncv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)\nestimator = SVC(gamma=0.001)\nplot_learning_curve(estimator, title, X, y, axes=axes[:, 1], ylim=(0.7, 1.01),\n cv=cv, n_jobs=4)\n\nplt.show()"
29+
"print(__doc__)\n\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom sklearn.naive_bayes import GaussianNB\nfrom sklearn.svm import SVC\nfrom sklearn.datasets import load_digits\nfrom sklearn.model_selection import learning_curve\nfrom sklearn.model_selection import ShuffleSplit\n\n\ndef plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None,\n n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)):\n \"\"\"\n Generate 3 plots: the test and training learning curve, the training\n samples vs fit times curve, the fit times vs score curve.\n\n Parameters\n ----------\n estimator : object type that implements the \"fit\" and \"predict\" methods\n An object of that type which is cloned for each validation.\n\n title : string\n Title for the chart.\n\n X : array-like, shape (n_samples, n_features)\n Training vector, where n_samples is the number of samples and\n n_features is the number of features.\n\n y : array-like, shape (n_samples) or (n_samples, n_features), optional\n Target relative to X for classification or regression;\n None for unsupervised learning.\n\n axes : array of 3 axes, optional (default=None)\n Axes to use for plotting the curves.\n\n ylim : tuple, shape (ymin, ymax), optional\n Defines minimum and maximum yvalues plotted.\n\n cv : int, cross-validation generator or an iterable, optional\n Determines the cross-validation splitting strategy.\n Possible inputs for cv are:\n\n - None, to use the default 5-fold cross-validation,\n - integer, to specify the number of folds.\n - :term:`CV splitter`,\n - An iterable yielding (train, test) splits as arrays of indices.\n\n For integer/None inputs, if ``y`` is binary or multiclass,\n :class:`StratifiedKFold` used. If the estimator is not a classifier\n or if ``y`` is neither binary nor multiclass, :class:`KFold` is used.\n\n Refer :ref:`User Guide <cross_validation>` for the various\n cross-validators that can be used here.\n\n n_jobs : int or None, optional (default=None)\n Number of jobs to run in parallel.\n ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.\n ``-1`` means using all processors. See :term:`Glossary <n_jobs>`\n for more details.\n\n train_sizes : array-like, shape (n_ticks,), dtype float or int\n Relative or absolute numbers of training examples that will be used to\n generate the learning curve. If the dtype is float, it is regarded as a\n fraction of the maximum size of the training set (that is determined\n by the selected validation method), i.e. it has to be within (0, 1].\n Otherwise it is interpreted as absolute sizes of the training sets.\n Note that for classification the number of samples usually have to\n be big enough to contain at least one sample from each class.\n (default: np.linspace(0.1, 1.0, 5))\n \"\"\"\n if axes is None:\n _, axes = plt.subplots(1, 3, figsize=(20, 5))\n\n axes[0].set_title(title)\n if ylim is not None:\n axes[0].set_ylim(*ylim)\n axes[0].set_xlabel(\"Training examples\")\n axes[0].set_ylabel(\"Score\")\n\n train_sizes, train_scores, test_scores, fit_times, _ = \\\n learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs,\n train_sizes=train_sizes,\n return_times=True)\n train_scores_mean = np.mean(train_scores, axis=1)\n train_scores_std = np.std(train_scores, axis=1)\n test_scores_mean = np.mean(test_scores, axis=1)\n test_scores_std = np.std(test_scores, axis=1)\n fit_times_mean = np.mean(fit_times, axis=1)\n fit_times_std = np.std(fit_times, axis=1)\n\n # Plot learning curve\n axes[0].grid()\n axes[0].fill_between(train_sizes, train_scores_mean - train_scores_std,\n train_scores_mean + train_scores_std, alpha=0.1,\n color=\"r\")\n axes[0].fill_between(train_sizes, test_scores_mean - test_scores_std,\n test_scores_mean + test_scores_std, alpha=0.1,\n color=\"g\")\n axes[0].plot(train_sizes, train_scores_mean, 'o-', color=\"r\",\n label=\"Training score\")\n axes[0].plot(train_sizes, test_scores_mean, 'o-', color=\"g\",\n label=\"Cross-validation score\")\n axes[0].legend(loc=\"best\")\n\n # Plot n_samples vs fit_times\n axes[1].grid()\n axes[1].plot(train_sizes, fit_times_mean, 'o-')\n axes[1].fill_between(train_sizes, fit_times_mean - fit_times_std,\n fit_times_mean + fit_times_std, alpha=0.1)\n axes[1].set_xlabel(\"Training examples\")\n axes[1].set_ylabel(\"fit_times\")\n axes[1].set_title(\"Scalability of the model\")\n\n # Plot fit_time vs score\n axes[2].grid()\n axes[2].plot(fit_times_mean, test_scores_mean, 'o-')\n axes[2].fill_between(fit_times_mean, test_scores_mean - test_scores_std,\n test_scores_mean + test_scores_std, alpha=0.1)\n axes[2].set_xlabel(\"fit_times\")\n axes[2].set_ylabel(\"Score\")\n axes[2].set_title(\"Performance of the model\")\n\n return plt\n\n\nfig, axes = plt.subplots(3, 2, figsize=(10, 15))\n\nX, y = load_digits(return_X_y=True)\n\ntitle = \"Learning Curves (Naive Bayes)\"\n# Cross validation with 100 iterations to get smoother mean test and train\n# score curves, each time with 20% data randomly selected as a validation set.\ncv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)\n\nestimator = GaussianNB()\nplot_learning_curve(estimator, title, X, y, axes=axes[:, 0], ylim=(0.7, 1.01),\n cv=cv, n_jobs=4)\n\ntitle = r\"Learning Curves (SVM, RBF kernel, $\\gamma=0.001$)\"\n# SVC is more expensive so we do a lower number of CV iterations:\ncv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)\nestimator = SVC(gamma=0.001)\nplot_learning_curve(estimator, title, X, y, axes=axes[:, 1], ylim=(0.7, 1.01),\n cv=cv, n_jobs=4)\n\nplt.show()"
3030
]
3131
}
3232
],
Binary file not shown.

dev/_downloads/ea2857380c5e032728a259b30f8e8582/plot_learning_curve.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -57,6 +57,7 @@ def plot_learning_curve(estimator, title, X, y, axes=None, ylim=None, cv=None,
5757
cv : int, cross-validation generator or an iterable, optional
5858
Determines the cross-validation splitting strategy.
5959
Possible inputs for cv are:
60+
6061
- None, to use the default 5-fold cross-validation,
6162
- integer, to specify the number of folds.
6263
- :term:`CV splitter`,

dev/_downloads/scikit-learn-docs.pdf

-175 Bytes
Binary file not shown.

dev/_images/iris.png

0 Bytes
-618 Bytes
-618 Bytes
-633 Bytes
-633 Bytes

0 commit comments

Comments
 (0)